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ABSTRACT 

Multiagent Systems use the power of collaborative software agents to solve complex distributed 

problems. There are many Agent-Oriented Software Engineering (AOSE) methodologies available to 

assist system designers to create multiagent systems. However, none of these methodologies can specify 

agents with dynamic properties such as cloning, mobility or agent instantiation. 

This thesis starts the process to bridge the gap between AOSE methodologies and dynamic agent 

platforms by incorporating mobility into the current Multiagent Systems Engineering (MaSE) 

methodology. Mobility was specified within all components composing a mobile agent class. An agent 

component was also created that integrated the behavior of the components within an agent class and was 

transformed to handle most of the move responsibilities for a mobile agent. Those agent component and 

component mobility transformations were integrated into agentTool as a proof-of-concept and a 

demonstration system built on the mobility specifications was implemented for execution on the Carolina 

mobile agent platform. 
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DESIGN & SPECIFICATION OF DYNAMIC, MOBILE, AND 

RECONFIGURABLE MULTIAGENT SYSTEMS 

/. Introduction 

1.1 Problem Background 

Imagine a platoon leader on a battlefield that needs to have detailed battlespace information at a 

critical point in the mission. Instead of having to stop the mission to search the global information grid and 

analyze the information needed, the leader could send out dynamic software agents. These agents would 

travel to the servers holding the data needed, analyze the data on those servers to compile the requested 

information and then travel back to the leader to report their findings. All the while the leader is freed to 

direct the soldiers in their current environment while waiting on the required information in order to move 

forward to complete the mission. 

Joint Vision 2020 [9] and Air Force Vision 2020 [20] stress that decision superiority is the next 

major battleground and that the armed forces need to control that battleground. Ongoing multiagent system 

research in the field of artificial intelligence may provide the solution to gaining and maintaining decision 

superiority to support the warfighters in this century. 

True multiagent systems bring the power of multiple collaborative software agents to solve 

complex distributed problems. However, the current Agent-Oriented Software Engineering (AOSE) 

methodologies used to design these multiagent systems have mainly focused on agents without the 

properties of mobility, cloning or agent instantiation that may be critical to solving problems faster and 

more efficiently. Many researchers have also developed numerous dynamic agent platforms to handle 

agents with the properties mentioned above but with no multiagent design methodology to go along with 

the platform. 



AOSE differs from the object-oriented methodology in terms of the agent-oriented abstractions 

used to model a system. These abstractions include agent-oriented decomposition, characterizing complex 

systems by subsystems, interactions between agents, and mechanisms for agents to flexibly form, maintain, 

and disband various organizational structures. Some current AOSE methodologies include Agent-Oriented 

Analysis and Design (GAIA) [25], Multi Agent Scenario-Based (MASB) [13] and Multiagent Systems 

Engineering (MaSE) [23]. 

The Air Force Institute of Technology (AFIT) Agent Research Group has been focused on 

developing and maturing an AOSE methodology. The MaSE methodology [23], as shown graphically in 

Figure 1, has been designed to cover the entire life cycle of developing and implementing a multiagent 

system. MaSE has an analysis phase that consists of the following three steps: capturing goals, applying 

use cases and refining roles. The design phase of MaSE consists of the following four steps: creating agent 

classes, constructing conversations, assembling agent classes and system design. Graphical models are 

used in each of the seven MaSE steps to assist the designer in the process. 

Deployment 
Diagrams System Design 

Figure 1. The MaSE Methodology [23] 



Defining a methodology specifically for formal agent system synthesis has been the main goal of 

the AFIT Agent Research Group. In order to accomplish this synthesis, the analysis models in MaSE must 

be transformed into the design models. These design models, in turn, must then be transformed into 

executable software code. In his thesis, Sparkman [18] developed the necessary transformations to convert 

MaSE analysis models into design models. In order to build the transformations, the semantics of the 

analysis and design models were defined and a mapping between the models was created [18]. 

The MaSE analysis phase models consist of roles that agents will play and the concurrent tasks 

that define the behavior of the roles and the coordination between those roles. These analysis phase models 

map to the following design phase models [18], as shown in Figure 2. Components existed in the former 

MaSE design architecture [15] but there was no guidance on how to use them to build agents or coordinate 

conversations between those agents. 

A component within an agent class, in the new design architecture, is created in an agent's internal 

architecture from each task that belongs to a role that the agent is playing. Since components correspond to 

the concurrent tasks, and those tasks were assumed to execute under their own thread of control, the 

components must also execute under their own thread of control. The coordination for passing internal 

events between components of the same agent class and the coordination of the conversations between 

different agent classes that was contained in the state tables of the concurrent tasks remains intact in the 

component state tables. 

States and transitions that compose the conversations are extracted from the state diagram of a 

component and replaced by an action on a transition that represents the execution of the conversation [18]. 

This is not the only way to model the organizational structure of agents, components, and conversations in 

the design phase but it does captures all of the information that is present in the analysis models while 

maintaining multiagent framework independence by retaining the basic idea of a conversation. 



Deals with both 
external and 

internal 
coordination 

behavior 

Only for external 
communication 

with another 
agent 

Figure 2. Relationship Between Analysis and Design Phase Models in MaSE [18] 

Sparkman's transformation system consists of three stages.   The inputs to the system are the 

completed Role Model, Concurrent Task Diagrams and assignment of roles to agent classes.   In the first 

stage, the components for each agent class are created from the tasks, the protocols for external events are 

determined, protocols between components are replicated in the design and converting external events to 

internal events if appropriate. Stage two activities include labeling the start and end of conversations in the 

component state diagrams and matching up conversation start events between the components. Finally, in 

stage three, the conversations are harvested from the component state tables.    States and transitions 

belonging to each half of the conversations are extracted from the component state diagrams and are 

replaced with a single transition and action that represents the execution of the conversation. 



Currently, however, agents designed using MaSE cannot be dynamic because they cannot clone 

themselves, are not mobile and do not instantiate other types of agents. Dynamic agent systems have 

shown promise in being able to solve certain network related problems such as finding services and 

information on the World Wide Web (WWW). These systems have shown an advantage in robustness of 

functionality over other client-server interaction solutions, such as Remote Procedure Calls (RPC), 

messaging and sockets. Dynamic agents are agents that possess the following properties: 

• Cloning - the ability of an agent to create another instance of itself 

• Instantiation or spawning - the ability of an agent to create instances of another type or 

class of agent other than itself 

• Mobility - the ability of an agent to move from machine to machine in a network 

These three agent properties, or traits, have been the focus of new research in the distributed artificial 

intelligence arena with the property of mobility receiving the most attention. 

Once a multiagent system has been analyzed and designed utilizing dynamic agents, an agent 

platform is required to handle the execution of those agents. An agent platform, by general definition, is a 

software system that has the ability to create, name, dispatch and terminate agents [1]. The Foundation for 

Intelligent Physical Agents (FIPA) [6] has defined an agent management reference model, which outlines 

many logical components that can be included in any physical implementation of an agent platform. A few 

examples of mobile agent platforms are: Concordia [22], Telescript/Odyssey [21], Aglets Workbench [10] 

and Carolina [16]. 

The Carolina platform (Figure 3) is currently under development at the University of Connecticut 

as part of the Multi-Agent Distributed Goals Satisfaction project. AFIT, the University of Connecticut, and 

Wright State University are conducting this research jointly. Three of the logical components listed by 

FIPA are provided by Carolina: the Agent Execution Environment, the Agent Management System and an 

Agent Communication Channel. Carolina's Execution Container is the agent execution environment and 

provides the place where the agent code executes. An AgentManager and AgentDirectory handle all agent 

management within Carolina. Agent management deals with handling the agent moves between platforms 



and maintaining relevant information about the agent. An agent communication channel allows agents to 

exchange information between one another concerning services and communication messages. The 

MessageManager provides that channel within Carolina. As mentioned above Carolina provides a 

framework for handling dynamic agents. However, there is no multiagent design methodology that one can 

use to develop agents that will execute in the Carolina environment. 

MessageClient Port MessageServer Port 

CAROLINA 

AgentClient Port AgentManager AgentServer Port 

Figure 3. Carolina Architecture [16] 

1.2 Problem Statement 

As was described above, multiagent systems bring the power of multiple collaborative software 

agents to solve complex distributed problems. However, the current Agent-Oriented Software Engineering 

(AOSE) methodologies used to design these multiagent systems have mainly focused on agents without the 

properties of mobility, cloning or agent instantiation that may be critical to solving problems faster and 

more efficiently. Adding these properties to AOSE methodologies gives those methodologies even more 

power to solve complex problems. Therefore, the problem addressed in this thesis is as follows: 

Modify the appropriate phases, steps and models of the current Multiagent Systems Engineering 

methodology to allow for the design and specification of multiagent systems using dynamic 

agents. 



1.2.1 Scope 

Even though many AOSE methodologies exist, only the MaSE methodology was modified to 

incorporate the specification and design of dynamic agents. The MaSE methodology was used because it 

has been developed at AFIT and is a complete multiagent system design methodology as opposed to other 

AOSE methodologies like GAIA [25]. 

The mobility aspect of dynamic agents was the only one of the three dynamic properties 

incorporated into MaSE because of the research time limitation. A simple demonstration system was 

designed and implemented using the Carolina Server software provided by the University of Connecticut as 

the Agent Platform (AP) for the dynamic agents [16]. This server software was used for this research 

because it was readily available and it supported the use of mobile agents. The Carolina Server software 

was not modified in any way to support this thesis. 

1.2.2 Assumptions 

The MaSE methodology and or the Carolina server changed during the course of this research due 

to ongoing improvements and research by other master students either at AFIT or the University of 

Connecticut. These changes were accounted for before deciding on any modifications to MaSE to support 

this research effort. 

1.3 Approach 

The following steps were taken to solve the problem of incorporating the concepts of dynamic 

agents into the MaSE methodology: 

1. Defined the properties of dynamic agents for the purposes of this thesis. 

2. Examined different options for integrating the mobility property into the analysis phase of MaSE. 

The advantages and disadvantages were explored for each option and the best option overall was 

selected. 



3. Examined different options for integrating the mobility property into the design phase of MaSE. 

Again, the advantages and disadvantages were outlined and the best option overall was selected. 

4. Developed transformations from the analysis phase models that incorporated mobility into design 

phase models in MaSE according to the methods chosen above. 

5. Demonstrated the feasibility of the problem solution in MaSE by analyzing, designing and 

implementing a multiagent system using mobile agents in Carolina. 

1.4 Related Research 

Building high quality software for real world applications is one of the most difficult construction 

tasks facing humans today [1]. The number and complexity of real world components and the relationships 

between those components makes modeling the real world difficult. Real world problems are also 

distributed, dynamic and heterogeneous. Many different approaches have been tried in the discipline of 

software engineering to tackle the task of modeling complex, distributed systems including the object- 

oriented and more recently, agent-oriented software engineering methodologies. 

Agent-oriented methodologies, as the name implies, are methodologies for building software 

systems that use agents. An agent is a software system that is [24]: 

• Autonomous - not controlled directly by humans or other agents 

• Cooperative - agents communicate amongst themselves to help achieve goals 

• Perceptive - agents perceive, react and can make changes to their environment. 

• Pro-active - agents are not passive entities like objects.   They exhibit goal-directed 

behavior. 

Agents are a natural extension of objects from object-oriented methodologies.  Agents differ from objects 

mainly in respect to exhibiting flexible autonomous behavior and operating in their own thread of control. 

Most current intelligent systems consist of a single agent [19]. However, a single agents' capacity 

to solve problems is limited by its knowledge, perspective and computing resources. Real world problems 

are generally too large, complex and unpredictable to be handled by a single agent.    Some artificial 



intelligence researchers have realized the limitations of a single agent and have focused work on multiagent 

systems. These systems can be executed on one machine or can be distributed across multiple networked 

machines. Distributed multiagent systems bring the power of modularity in the form of flexible agent- 

based organizations to handle the complexity and size of real world problems. Multiagent systems can also 

provide efficient solutions to real world problems where resources or expertise is distributed. 

The GAIA, MASB and MaSE methodologies introduced in Section 1.1 all cover the entire 

lifecycle of multiagent systems design. All three methodologies are similar because they are based on the 

view of a multiagent system being a computational organization consisting of various interacting roles. In 

each methodology an agent can play one or many roles at any given time. Agents within these 

methodologies interact through conversations with each other. 

These methodologies differ mainly in terms of the amount of detail they provide to build 

multiagent systems. MaSE and MASB provide much more detail for defining conversations than GAIA. 

MASB is the only methodology that emphasizes human/agent interactions. Only MASB and MaSE 

provide models for building the internal knowledge structures for agents. MaSE is the only methodology 

that specifies the locations of the agents in the final system. One major shortfall that exists in all three of 

the methodologies described above is the ability to analyze and design a multiagent system where the 

agents can be dynamic. Appendix A contains a more detailed analysis of these methodologies. 

The properties of dynamic agents, namely mobility, cloning and instantiation, can be thought of as 

extensions of the general definition of an agent. Dynamic agents posses tremendous network functionality 

and could replace current network protocols such as Remote Procedure Calling (RPC) and messaging. In 

fact, if all the functionality provided by a dynamic agent system is taken together, there is no single 

alternative that can provide that same level of functionality [2]. Advantages of using dynamic agents 

include [2][7][11]: 

1) They can reduce communication and bandwidth costs 

2) They can be hardware and operating system independent depending on the 

mobile agent platform they execute on 



3) They can be fault tolerant 

4) They can maintain an optimal configuration 

However, there are three main reasons why dynamic agent technology has not replaced Remote 

Procedure Calls and messaging. The first deals with the lack of a specific network function that can be 

accomplished only by the use of dynamic agents. Everything that a dynamic agent system can do can be 

done using other network protocols [2]. The second reason is that RPC and messaging have been used 

successfully for many years. Finally, dynamic agent technology is still in its infancy. Many issues still 

need to be worked out including security and standards/interoperability. There are many dynamic agent 

systems (mostly focusing on the mobility aspect) already in industry but there is very little interoperability 

to date. FIPA and the Object Modeling Group have begun to develop standards, but they have not been 

widely accepted. 

Dynamic agents, as opposed to static agents, need certain capabilities provided by their execution 

environment. FIPA has defined an agent management reference model that defines many of these 

capabilities or logical components. Dynamic agent systems, such as Concordia, Telescript/Odyssey, Aglets 

Workbench and Carolina, have at least the following three components: Agent Platform, Agent 

Management System and Agent Communication Channel. All four of these platforms were written in Java 

to provide hardware and operating system independence. 

Most of the differences between the platforms are either in functionality provided, the way in 

which agents communicate or how agent mobility is handled. Concordia provides the most functionality in 

terms of the FIPA logical components but takes away some of the autonomous ability of the agents. 

Concordia requires each agent to have a fixed itinerary and uses the Agent Manager to deal with resending 

agents to an unresponsive platform. Carolina forces all agent-to-agent communication through the server. 

Telescript/Odyssey is the only platform where the agent moves by calling a command within the agent 

system itself. The other platforms have a hierarchy of methods that form an agent life cycle with a "job" 

method that once ended specifies a location for agent travel. Appendix A contains a more detailed 

analysis of these platforms. 
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1.5 Thesis Overview 

This document is organized as follows. Chapter II discusses the different options for integrating 

mobility into the analysis and design phases of MaSE, where advantages and disadvantages of each option 

are discussed. Chapter III begins with the selection of the best options from the choices presented in 

Chapter II. Then, transformations, based upon those selections, are developed to transform the mobile 

analysis models into mobile design models. Chapter IV demonstrates the use of a multiagent system, 

analyzed and designed using MaSE, using the solution described in Chapters II and III. Chapter V 

completes this thesis by summarizing the contributions of this thesis effort and describes future research 

that could expand upon and contribute to the work started in this thesis. 
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//. Problem Approach 

Incorporating dynamic agents into any multiagent design methodology entails studying each phase 

of the methodology to determine how the concepts should be added. This chapter describes the approach 

taken to add mobility concepts to the analysis and design phases of MaSE. 

For illustration and understanding, an example system will be analyzed and designed using the 

different options presented in the following sections. Section 2.1.2 introduces the sample problem that will 

be used to illustrate the differences in the options presented. This sample problem will also be used in 

Chapter III. 

2.1 Analysis Phase 

All three of the MaSE analysis phase steps, Capturing Goals, Applying Use Cases and Refining 

Roles, were examined for possible inclusion of mobility. In the Capturing Goals step the overall goals for 

the system are extracted from the initial system context. These goals should not contain detailed 

information. An example of a goal might be, "Find Requested Information". The goal is to find the 

information that is requested and does not include the detailed definition of how to find that information, 

which may change with time. 

Mobility concepts fall more into the detailed process of how an agent behaves in order to fulfill its 

goal. An agent might not have to move in order to fulfill its goals or find requested information as in the 

example above. However, a sub-goal of the previous goal could be "Move to Information Source". The 

functionality of moving is not described in this sub-goal just the requirement to move. Thus, mobility 

could, but does not have to be, included in the overall system goals. 

Mobility would pertain to the Applying Use Cases step only if mobility was a system goal. Since 

roles are responsible for system goals and the goals can include mobility, then there could be a mobility 

role in the system.   On the other hand, if the goals do not include mobility then there should not be a 
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mobility role.   These two possibilities form the basis of the analysis options presented in subsequent 

sections. 

Even if mobility was not included in the two previous steps, mobility was already an option in the 

Refining Roles step. As described in Appendix A, the MaSE methodology uses concurrent tasks to define 

internal agent behaviors and the conversations between agent classes [134]. Concurrent tasks operate 

within their own thread of control and define the decision process for actions taken by the roles. Activities 

within those tasks represent the actual functions that a role is to perform. There are currently a number of 

predefined activities available to include in a task. One such activity is the move activity that moves an 

agent to a new address. A single Boolean variable is the result of the move activity. The Boolean result 

represents whether the move actually occurred. The syntax for the move activity is shown below. 

Boolean = move(location) 

However, having only a simple Boolean result from the move action is not adequate to allow 

agents to properly reason about mobility. An explanation, or reason why the move failed, is required to 

provide the agent with enough flexibility to recover from moving failures. Different reasons for failure to 

move include: the mobile agent platform on the destination address is not operational, the machine that the 

agent is moving from is isolated from the rest of the network, the mobile agent platform denies the move 

because of security or other reasons, etc. Therefore, a new move activity was defined that returns two 

values: a Boolean value and a Reason value. The Boolean value again represents whether the move 

actually occurred while the Reason variable denotes the reason for failure, if applicable. The syntax for the 

new move activity is shown below. 

<Boolean,Reason> = move(location) 

If, however, a designer does not wish to know or use the reason for a moving failure then the original move 

activity can still be used. 
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2.1.1 Options 

There are two possible options for specifying mobility in the MaSE analysis phase. The first 

option is to specify mobility only within concurrent tasks in the Refining Roles step. Whereas the second 

option is to allow mobility to be specified within all steps of the analysis phase but with the requirement to 

use a special move task and role in the Refining Roles step. Both options are discussed in detail and then 

illustrated by the MASS system in the following sections. 

2.1.1.1 Move Activity Contained Exclusively Within Concurrent Tasks 

The first possible option to specifying mobility in the MaSE analysis phase is to ignore mobility 

until the Refining Roles step. The concept of mobility would be confined to using the special move 

activities discussed above in the concurrent diagrams defining tasks. A mobile task, then, is a task that 

contains a move activity. In contrast, a non-mobile task is a task that does not contain a move activity. 

The first, and primary, advantage for using this approach is that it only requires the addition of a 

more robust move activity to the existing concurrent task model. A second advantage for using this 

approach is that it allows more flexibility in the design of the system. This will be more evident when the 

design options are discussed in following sections. Finally, by keeping the concept of mobility self- 

contained within individual tasks, any tasks attached to a role with a mobile task do not have to be altered 

to deal with mobility, however, those tasks will have to be modified in the design phase. 

2.1.1.2 Special Move Role and Task 

Placing either form of the move activity into a special move task under a separate move role is the 

second possible option for incorporating mobility into the analysis phase. Currently, the MaSE role model 

architecture does not allow for same task being placed under multiple roles [18]. Therefore, the special 

move task would be placed under a separate move role and combined with other roles in the design phase. 

Protocols would then be established from any other task in the system (requiring mobility) to that move 

task. 
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Reusability and modularity are the main advantages for using this approach. Whenever any role in 

a multiagent system needs mobility the predefined mobility task and role can be inserted with appropriate 

protocols defined from that role to the Move task under the Move role. 

There is one main disadvantage to this option. Protocols defined between each task requiring 

mobility and the special move task would need to be added to the MaSE Role Diagram. Thus making the 

Role Diagram more complicated. 

2.1.2 Mobile Agent Search System (MASS) 

Now, an example multiagent system is introduced that will illustrate the two options discussed 

above. This system will be analyzed by using the current MaSE methodology with the addition of the 

move activity discussed in Section 2.1. 

Users have vast amounts of information at their disposal distributed across their organization's 

data storage infrastructure. As these technology users perform their jobs, they are required to research 

certain topics as they generate documents. Having to search each pertinent document or database to find 

required information would be a daunting and very time consuming task. To solve this problem a 

multiagent system could be developed to assist these users in searching. The goal of these agents is to 

search through the organization's data stores, compile the results and report that information to the user. 

To illustrate each analysis option, this problem will now be taken through each step in the MaSE analysis 

phase. 

2.1.2.1 Analysis Option 1 

Figure 4 shows the MaSE goal hierarchy diagram for the Mobile Agent Search System (MASS) 

for analysis option one. Notice that mobility is not listed within any of the system goals. Next, the roles 

for the MASS system are initially defined by the Applying Use Cases step. A use case that defines the 

overall operation of the MASS system is shown in Figure 5. Figure 6 shows the corresponding sequence 

diagram for that use case. 
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Figure 7 shows the analysis option one MaSE role diagram for the MASS.   The Manager role 

announces tasks to the Bidder role using the Contract Net protocol.   Once the Bidder role has won the 

bidding process for a search request, it sends the request to the Search role using the Search Request 

protocol.   The Search task under the Search role searches for the requested information and reports the 

results back to the Bidder role, which then forwards it back to the Manager role. 
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Finally, defining the concurrent tasks is the last part of the Refining roles step. Figure 8 shows the 

Bid task for the MASS system. This task starts in an idle state and begins processing only after receiving 

an announcement of a task from the Manager. Thus, this task is a persistent reactive task. Once receiving 

the announcement, the Bidder role decides whether to bid on the task in the prepareBid state. The Bid task 

transitions back to the idle state to wait for more announcements if either the task is not bid on or the task 

was bid but the bid was rejected. If the Manager accepts the bid, the Bidder role sends the search task to 

the Search role. The Search role replies with the results of the search whether successful or not. 
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Figure 8. Bid Task for MASS System 

The designer determines that the Search role needs the ability to move in order to find the 

requested data. Figure 9 shows the complete Search task that includes a move activity. The task is started 

by receiving a "do(task)" message from the Bidder role. In the moveNeeded state, the searchDestination 

activity takes the task as input and returns the location where the data source is located, while the 

checkLocation activity returns where the current address of the agent. The compare activity takes the 

destination and current addresses and determines whether the agent needs to move. 
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If the agent does not need to move, the find activity in the search state executes and returns the 

results and a reason for failure, if applicable. If the agent does need to move, the move activity in the 

tryMove state is executed. If the move is successful then the find activity is executed in the search state as 

described above. If the move is unsuccessful, a message is sent back to the Bid task with the reason for the 

failure. This completes the analysis of the MASS using analysis option one. 
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2.1.2.2 Analysis Option 2 

Analysis option two incorporates mobility starting in the Capturing goals step. The only 

difference between the Goal Hierarchy Diagram in Figure 4 and the one shown in Figure 10 is the inclusion 

of the "Move to Source" goal. 
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Next, the use case and sequence diagram for analysis option two also include mobility.   The 

Searcher role sends a destination to a Mobile Agent role, which sends back confirmation of the move. 

Figure 11 shows the use case while Figure 12 shows the corresponding sequence diagram. 
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The expanded MaSE role diagram for the MASS system for this option is shown in Figure 13. 

The difference from analysis option one is the addition of the mobile agent role and associated move task. 

In this case, after the Search task under the Search role determines that a move is needed a message 

containing the destination is sent to the move task. The move task uses the either of the previously defined 

move activities to perform the move. 

The Bid task is the same as in the previous section. Changes to the Search task to call the move 

task instead of using a move activity are shown in Figure 14. In the Search task, when the determination to 

move is made, in the moveNeeded state, a "go" message containing the destination is sent to the Move task. 

The Search task will receive back either a success message or a sorry message containing the reason for the 

failure from the Move task. 
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Figure 14. Analysis Option 2 Search Task in MASS System 

The functionality for the Move task under the Mobile Agent role is basically taken out of the 

Search task in the first analysis option and is shown in Figure 15.   The receive message contains the 

parameter role which is generic so any other task that needs mobility just needs a protocol defined between 
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that task and the move task. This completes the MaSE analysis for the MASS system using analysis option 

two. 
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2.1.3 Summary 

Adding mobility to the analysis phase of MaSE can possibly stretch across all three steps or be 

confined to just one. If mobility goals are included in the Capturing Goals step then it will also be included 

in the Applying Use Cases and Refining Roles steps. However, mobility concepts can also be confined 

only to the Refining Roles step with no loss of system definition. The best option will be chosen along 

with the best option for incorporating mobility into the design phase at the end of this chapter. 

2.2 Design Phase 

As was the case with incorporating mobility into the analysis phase, each of the four design steps 

was reviewed for possible impacts due to mobility. There were no changes to the Creating Agent Classes, 

Constructing Conversations or System Deployment steps with respect to mobility. Changes were made, 

however, in the Assembling Agent Classes step. After the changes were made, three possible options for 

incorporating mobility in the MaSE design phase were discussed. 
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2.2.1 Creating Agent Classes 

In the Creating Agent Classes design step, the roles in the system are placed into agent classes. 

Each agent class can consist of one or more roles. If analysis option 1 were chosen then there would be no 

changes to this step. However, if analysis option 2 were chosen, then the special move role would have to 

be incorporated into every agent class that contained a role with a task that had a protocol defined between 

it and the move task in the analysis phase. 

Before analyzing the Constructing Conversations and Assembling Agent Classes steps, changes 

that were made to the MaSE agent architecture and conversations need to be addressed [18]. These 

changes necessitated the creation of an agent component, which is discussed in the following section. 

2.2.1.1 Agent Component 

In the former MaSE agent architecture, each agent consisted of a group of components with 

connectors between the components and from those components to the environment. But there was no 

defined mapping between the tasks and protocols defined in the analysis phase and the components that 

represented the actual functionality of the agent class in the design phase. 

Tasks, within MaSE, are categorized by their life span and responsiveness. Task life spans are 

either persistent or transient. Persistent tasks always have a null transition from the start state to the first 

state. These tasks are started when the agent is created and run until either the task or agent terminates. 

Transient tasks, however, always have a trigger event on the transition from the start state. These tasks are 

not started upon agent creation but only when the agent receives its trigger event. Transient tasks make it 

possible to have multiple concurrently executing tasks of the same type. 

There are three types of task responsiveness: reactive, proactive or heterogeneous. Reactive tasks 

can be either persistent or transient. A persistent reactive task has a null transition from the start state to an 

idle state, where it remains until it receives a triggering event from the agent. On the other hand, a 

transient reactive task must receive a triggering event from the agent before it can begin processing.   A 
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proactive task continuously generates requests for other agents or tasks, is always persistent and does not 

contain any idle states. And finally, a heterogeneous task is a combination of a proactive and reactive task. 

It is persistent, but does not start in an idle state and must generate at least one request for another task or 

agent before entering an idle state. 

In the new MaSE agent architecture defined by Sparkman [18], a component is created for each 

task that is part of a role in an agent class. Each component is classified as reactive, proactive or 

heterogeneous depending on the type of the task from which it was created [3]. Since concurrent tasks 

were assumed to operate under their own thread of control, now each component is also assumed to operate 

in the same way. Thus, a reactive agent is an agent with only reactive tasks while a proactive agent is an 

agent with at least one proactive or heterogeneous task. 

Because of the fact that an agent might only have transient components, the agent itself has to 

exist in order to receive an external request by another agent that starts a transient component. This 

problem necessitated creating an agent component, which is started upon agent creation, controls the 

initiation of the other components, and handles initial conversation messages received from other agents in 

a system. Figure 16 shows the new message passing architecture using agent components to start new 

conversations. 

Creating the agent component will be accomplished in four separate steps. In step 1, the basic 

agent component, with states and transitions that are common to all agents, is created. In step 2, the agent 

component is completed for agents with only transient components. In step 3, the agent component is 

completed for agents with only persistent components. And finally, in step 4, the agent component is 

completed for agents with both transient and persistent components. 
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Figure 16. Message Passing Architecture for Starting Conversations 

2.2.1.1.1 Step 1: Basic Agent Component 

The basic MaSE agent component is shown in Figure 17. The parts of this component are the 

same regardless of the combination of transient and persistent components that an agent class possesses. 

All messages from other agents that initiate conversations are handled in the agent component as shown by 

the transition from the idle state to the determineRecipient state. The getComponent activity takes the 

received message and determines which component, either currently executing or needing to be started, is 

the recipient. 

Determining which component should receive or which component needs to be started with a 

message could be ambiguous. The solution to this problem is left to future research. If the component is 

already running then the relay action forwards the message to the component. The agent can also receive a 

terminate message from its owner in which case the agent will terminate along with any components that 

are still operating. 
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extReceive(terminate,agent) 

idle 

extReceive(message,agent) 

ir 

^^ 
determineRecipient 

c=getComponent(message) 

Figure 17. Basic Agent Component Diagram 

2.2.1.1.2 Step 2: Transient Agent Component 

A transient agent component is created if an agent class only consists of transient components and 

there are no move activities specified in any of those components. The additions to the basic agent 

component to support this case are shown in bold in Figure 18. 

extReceive(terminate,agent) 

extReceive(message,agent) 

determineRecipient 
c=getComponent(message) 

[c==null] 

startComp 
c=createComp(message) 

I    [c!=null] 

updateComponentList 
addCompList(c) 

Figure 18. Agent Component for Agent with only Transient Components 
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A null transition is added from the start state to the idle state because transient components are 

only started by receipt of an external or internal message. The startComp state was added with the 

createComp activity to handle the case when a message does not belong to an existing component. Every 

component upon startup is added to the list of active components by the addCompList activity in the 

updateComponentList state. If a received message is not the event that starts a transient component, then a 

"sorry" conversation is started with the agent that sent the message. 

2.2.1.1.3 Step 3: Persistent Agent Component 

A persistent agent component is created when an agent class contains only persistent components 

with no move activities specified. Additions to the basic agent component to support this case are shown in 

bold in Figure 19. The startPersistentComps state containing the startComps activity was added along with 

a null transition from the start state to the startPersistentComps state because all persistent components are 

started when an agent is created. In case there is an error starting the components, the transition from the 

startPersistentComps state to the end state is triggered. If the components are started without error, then the 

transition from the startPersistentComps state to the idle state is triggered. This transition contains an 

action with the function setTimer that takes as input from the designer a period of time and sets a timer. 

[NOT active] 

checkComps 
active=checkActiveCompsC 

fNOT startedl 
StartPersistentComps 
started=startComps() 
time=getSleepTime()  p  

[started]/t=sctTimer(time) 

extReceive(terminate,agent) 

■o 

[timeout(t)] 

ractivel/t=setTimer(time) 
extReceive(message,agent) 

[c!=null]/relay( messages) 

determineRecipienl 
c=getComponent(message) 

c=-nulll/sorry(agent) J 
Figure 19. Agent Component for Agent with only Persistent Components 

Once the time interval specified has passed, the transition from the idle state to the checkComps 

state is triggered. The checkActiveComps activity within the checkComps state determines if at least one 
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component is still processing. If one or more components are still processing, the transition from the 

checkComps to the idle state is triggered and the timer is reset. If all components have ceased processing 

either normally, or with an error, the agent's work is complete and the transition from the checkComps to 

the EndState is triggered. 

Checking the status of the persistent components allows the agent to terminate normally, even in 

the case of component failure. Finally, the transition from the determineRecipient state to the idle state was 

required to handle the case of an external message that does not belong to an existing component. 

2.2.1.1.4 Step 4: Transient/Persistent Agent Component 

A transient/persistent agent component is created when an agent class consists of both transient 

and persistent components with no move activities specified. The state transition diagram for this option is 

basically the same as an agent with only transient components with the addition of the starfPersistentComps 

state. The agent component for this combination is shown in Figure 20. 

rNOT started!      startPersistentComps 
started=startComps() 
 1 ' 

[started] 

extReceive(terminate,agent) 

idle 

extReceive(message,agent) 

[c!=null]/relay(message,c) 

determineRecipient 
c=getComponent(message) 

I [c==null] 

startComp 
c=createComp(message) 

X    [c!=null] 

updateComponentList 
addCompList(c) 

Figure 20. Agent Component for Agent with both Transient and Persistent Components 
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The timer logic was not added because an agent containing even one transient component is 

considered to process forever or until a terminate message is received from its owner. An agent containing 

this component can be labeled either reactive or proactive. 

2.2.2 Constructing Conversations 

Once the agent component has been constructed, the analysis of the Constructing Conversations 

and Assembling Agent Classes steps for mobility impacts can be accomplished. A conversation is taken 

from the state diagram of a component and replaced in that diagram with an action on a transition that 

represents the entire execution of the conversation [18]. Since conversations are only supposed to model 

agent-to-agent interaction, allowing a conversation to call for a move was not permitted. Restricting move 

activities to components also eliminated the complexity of interrupting conversations by calling for a move 

and then having to reconstruct a conversation into the proper state after a move. Thus, ensuring that move 

activities defined within components are not placed within a conversation was the only addition needed in 

the Constructing Conversations design step. 

2.2.3 Assembling Agent Classes 

Significant changes to the components created in the Assembling Agent Classes step were also 

needed. For either analysis option 1 or 2, the move activities specified in each are transformed directly into 

the corresponding state in the diagram for the component [18]. A non-mobile component is a component of 

a mobile agent that does not include a move activity in any of its states. Thus a mobile component is a 

component of a mobile agent that includes a move activity in at least one of its states. In the case of 

analysis option 2, only the move component created from the special move task would be a mobile 

component. 

2.2.4 Options 

The three options discussed below for incorporating mobility into the MaSE design phase, are as 

follows: 
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1. Mobile components handle the move responsibilities. 

2. A separate mobility component handles the move responsibilities. 

3. The agent component created in Section 2.2.1 is modified to handle the move responsibilities. 

Each of these options is discussed in detail in the following sections. Before discussing the options, 

however, a list of moving requirements that each option has to address needs to be presented. The 

following activities at a minimum need to be performed in order for a move to be successfully completed: 

1. Each active component needs to be informed that a move has been requested by a mobile 

component. If an agent contains only one persistent mobile component then that component 

does not need to receive its own move request message. However, if an agent contains a 

single transient mobile component then that component does need to receive its own move 

request message since there can be many instances of that transient mobile component 

executing at the same time [3]. Finally, if an agent contains two mobile components of any 

type, all components need to be able to respond to a move request message. 

2. Once informed of a move request, each component needs to save the work it was performing 

and terminate without error. This implies that each component must be able to save its 

current state and then terminate. Furthermore, if a non-mobile task did not have an end state 

then an end state will have to be added to the component that is created from that task. 

3. After all components have terminated the agent can then move to another address. 

4. Once the agent has moved, all components that were active need to be restarted. This 

requirement implies that functionality needs to be added to restart a component into the 

correct state at the new address. 

Additional activities add robustness and fall under the autonomous nature of agents: 
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5. Each Component decides whether it can stop current processing and move.   There are two 

possible responses to a move call: 

a. A component can decide that a move would not allow it to complete its goals. In this 

case the component would deny a move request. 

b. A component can decide that a move would not hinder it from completing its goals. 

In this case the component would accept a move request. 

6. Every component that calls for a move must be able to handle both of the responses to a move 

call listed above. 

Each design option fulfills the requirements listed above but varies with respect to which component 

handles those requirements. 

2.2.4.1 Individual Components Handle Move Functionality 

In this option, each mobile component is transformed to handle the moving responsibilities for it 

and for the entire agent. These mobile components need to satisfy the requirements discussed above as 

well as handle the interface between the agent and the mobile agent system in which the agent is executing. 

An advantage to this approach is that only minor changes are required for the agent component 

and other non-mobile components. Most all of the moving logic is contained within the move capable 

components. A disadvantage is that each component with move capability has to be aware of all active 

components so it can notify those components that a move is occurring. This communication overhead is 

shown in Figure 21. Another disadvantage would be the duplication of move functionality in the 

components that require mobility. Each move capable component would have the exact same code for 

conducting a move. A final disadvantage is that in this approach a move capable component appears to 

have control over the other components. Having control over the components should be kept within the 

notion of an agent rather than in one of its components. 
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I Component/ 

get component list 
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Non-Mobile 

Component: 1 

move required 

move required 
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j   ready (state information) 

ready (state information) 

D   ( Non-Mobile 
Component: 

ready (state information) 

D 

Figure 21. Sequence Diagram for Mobile Component Handling Move 

2.2.4.2 Mobility Component Handles Move Functionality 

In this option, a special move component is created to handle the moving responsibilities for an 

entire agent. As was the case with the first design option, this move component needs to satisfy the 

requirements discussed above as well as handle the interface between the agent and the mobile agent 

system in which the agent is executing. 

This option is an obvious result of following analysis option 2. The separate move role and task 

would be combined into an agent class with roles with move requirements. This special move task would 

then be transformed into a special move component in the design phase. This move component would 

handle the moving responsibilities for the agent much like a mobile component in the previous design 

option. 

An advantage to this approach is that there is no duplication of move functionality in the 

components. Most of the move functionality is contained in the move component. One disadvantage to 

this approach is increased communication. The move component, like a mobile component in design 

option 1, has to get information about all other components from the agent component after an initial move 

request is received from another component. This results in adding one additional message to the overall 
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move process as presented in design option 1. The sequence diagram showing the communication 

overhead is shown in Figure 22. 

Agent    "N f     Move\ (      Mobile     "\ f~ 
Component,/ y Component,/ y Component J \_ 

get component list 

component list 

move required 

ready (state information) 

move (state information) 

move required 

Non-Mobile 
Component 

ready (state information) 

) 

Figure 22. Sequence Diagram for Move Component Handling Move 

2.2.4.3 Agent Component Handles Move Functionality 

In this option, the agent component is transformed to handle the move responsibilities for the 

entire agent. As was the case with the first two design options, the agent component needs to satisfy the 

requirements discussed above as well as handle the interface between the agent and the mobile agent 

system in which the agent is executing. 

One advantage to this option is reduced communication when activating the move process 

compared to design options 1 and 2 as shown in Figure 23. The reduced communication comes from the 

fact that the two messages required for a component to receive information about other components are 

eliminated. The agent component already has access to all other component information and can easily 

send out "move required" messages to those components. Another advantage is that there is no duplication 

of move functionality in each mobile component as in design option 1. All of the moving functionality is 

handled by the agent component. This option is also more centralized than either design option 1 or 2. The 

one disadvantage to this option is that it is less modular than option 2. 
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This concludes the discussion of the design options. Each of these options will be illustrated by 

using the MASS system in the following sections. 

c Agent 
Component ) ( 

Mobile    "\ Z' Non-Mobile 
Component ., 

move (state information) 

move required 

move required 

^Component: 

ready (state information) 

D    C Non-Mobile 
Component: 

ready (state information) 

D 

Figure 23. Sequence Diagram for Agent Component Handling Move 

2.2.5 MASS System 

In the Creating Agent Classes step, the system roles are placed into agent classes. As shown in 

Figure 24 for analysis option 1, the Bidder role and the Searcher role were combined into the 

MobileSearcher agent class and the Manager role became a separate agent class called SearchManager. 

This agent class diagram is the same for the examples used to illustrate design options 1 and 3. 

Add Agent 

Add Conv 

*gaaToolvl.8 

ferity l:odeGen   Tranc formation 
: -fal*l| 

Currer fly Selected (Agent MobileSearcher 

: Agent Template Diagram SDeptosS^WO 
Goaftfierarchy \ Use Cases   Seq Diagram Role Diagram 

'<w\ 

SearchManager MobileSearcher 

Manager Bidder 
Searcher 
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Figure 24. Analysis Option 1 Agent Class Diagram for MASS System 
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As shown in Figure 25 for analysis option 2, the Bidder, Searcher and MobileAgent roles were 

combined into the MobileSearcher agent class and the Manager role became a separate agent class called 

SearchManager. This agent class diagram is used to illustrate design option 2. 
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Agent Template Diagn itn   Duplnyr 
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Add Cow läbl 
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Tr 

SearchManager 
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Searcher 

MobileAgent 

Manager 

^■|*gentToolvl.8 
;: jR«**^ iiiraiiii[i:...i:i:i::;::::z:z.:::::: ►   

Figure 25. Analysis Option 2 Agent Class Diagram for MASS System 

Next, the components belonging to the different agent classes are transformed from the tasks using 

the transformation process defined by Sparkman [18].    Then, the appropriate mobility requirements 

described in Section 2.2.4 are added to those components. 

The Bidder component is the same for all of the design options presented in the following 

sections. Since this component resides in an agent class that contains a mobile component, it must have the 

functionality to fulfill the first four requirements listed in Section 2.2.4. The Bidder component (after 

transformations [18]) with required mobility additions is shown in Figure 26. 

The moveReq transition from the waitForBidResult state to the moveReceived state fulfills the 

first requirement. In this example, the waitForBidResult state was the only state selected by the designer 

for receipt of a "moveReq" message. However, all states except for the start state and end state are eligible 

to receive a move request message. The second and third requirements are satisfied by the function 

saveCompState in the moveReceived state and the ready(stateInfo,comp) transition from that 

moveReceived state to the EndState. The fourth requirement is fulfilled by the start(statelnfo) transition 

from the StartState to the restore state and the transitions from the restore state to other states in the 
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diagram. Adding the functionality to fulfill the fifth requirement listed in Section 2.2.4, that is, to deny a 

move request message, is left up to the designer and was not included in the Bidder component. This 

implies automatic acceptance once a move required message is received. 

start(slatelnfo) 

[state—waitForBidResult] 

restore 

state=restart(statelnfo) 

Null! sorry(reason) waitForSearchResults 

[states idle] 

J» 

,/ / 

Idle 

[null]/Conversation8J^mgfTreason) 

[nullKConversation9-1 (mgr, results) 

info(resutfs) 
y    [null]%q(task) 

JC 
NUII2 

NullO 

l?r- 

receive(sorry(task), firsrifConversationl 2-1 (mgr) 
receive(announce(task, cost), njgrjfconversationl 1-1 (mgr) 

\ 
receive(announce(task), rhgr)/Conversation7-1 (mgr) rhar) 

[NOt bid] 
\ \ 

waitForBidResult 

JL. 
[bid]/Corwersation10-1,(frfgr, task, cost) 

prepareBid 

cost= costToPeiform(task) 
bid = acceptabilityftost, task) 

eReq 

moveReceived 

statelnfo=saveCompStateO 
comp=getCompNameO 

ready(statelnfo,comp) J, m 

Figure 26. Bidder Component From MASS System 

The Agent component will be different for design option 3 and the Search component will be 

different for design option 1. Because of this reason the diagrams for these components will be presented 

as appropriate in each design option section. 

2.2.5.1 Design Option 1 

Figure 27 shows the Search component for the MobileSearcher agent class from Section 2.1.2.1 

transformed to handle mobility responsibilities. The Search component is started with an internal start 

message with the parameter statelnfo. This state information contains the processing state of the Search 

component as well as for the other components before the Search component called for a move. If the 

statelnfo is null and the bid component sent the Search component a search task then the Search component 
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transitions to the moveNeeded state. If the statelnfo is not null then the agent has just moved and the 

Search component must restart any components that were shutdown at the previous address. 

start(statelnfo) 
[compsStarted and reason!=null]Asorry(reason) 

restore 
currentLocation=checkLocation() 

compsStarted=restore(stateInfo,moved,reason) 

k<state,reason>=restart(stateInfo,currentLocation)j 

[NOT compsStarted] 

do(task)[compsStarted and stateInfo==null] 
 I  

moveNeeded 
dest=searchDestination(task) 

currentLocation=checkLocation() 
needMove=compare(dest,currentLocation) 

> , ■> 

[needMove] 
 I  

[compsStarted and state==search] 

[NOT needMove] search 
<results,reason>=find(task) 

[reason==nu11]Ainfo(results) 

[reason!=null]Asorry(reason) 

moveDecision 
<denied,reason>=decision() 

[denied]Asorry(reason) 

[NOT denied]AgetCompList ready(stateInfo,comp^ 

waitForList 

compList(list) 
 I  

update 
stateInfo=saveState(stateInfo) 

list=remove(list,comp) 

checkSize 
isEmpty=size(list) 

[size(list)>0]/broadCast(moveReq,list) [size(list)<=0]AsaveAgent(stateInfo) 

[moved] 

[ isEmpty]AsaveA°ent(stateInfo) trvMove 
<moved,reason>=move(dest) 

[NOT moved] 

Figure 27. Design Option 1 Search Component for MASS System 

The restore function in the restore state handles restarting the other components. If the 

components do not start for whatever reason then the agent will not be able to perform its goals. An internal 

terminate message is sent to the agent component. The checkLocation function in the restore state is used 

to determine the agent's current address. The result of this function is used in conjunction with the 

statelnfo to determine what state the component should start in. The Boolean variable state is used to 

transition from the restore state to the proper state for continuing execution. The Search component 

transitions to the search state if the agent moved. 

Once a decision to move has been made in the moveNeeded state, the decision function in the 

moveDecision state is where the designer can specify how an agent decides to move. If a move is not 
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allowed, then the Search component has to get the list of currently active components from the agent 

component. If the list is not empty then a broadcast function is used to send move required (moveReq) 

messages to all active components including the agent component. Once all the other components have 

saved state and terminated, the Search component then signals the mobile agent system that the agent needs 

to move. If the move is denied then the other components have to be restarted. If the move is successful 

then the agent component is started on the new address and starts the Search component in the reestablish 

function in the reestablish state. 

Figure 28 shows the corresponding agent component for design option 1. This agent component is 

the combination of transient and persistent discussed in Section 2.2.1.4, because the Bidder component is a 

persistent component and the Search component is a transient component. 

^___ [NOT compStartedl 

ready(stateInfo,comp) 

[NOT startedl startPersistentComps 
started=startComps() 

[statelnfo=null1    rf*~i 

[started] 
[statelnfb!=null] 

T 

extReceive(terminate,agent) 

moveReceived 
stateInfo=saveAgentState() 

comp=getCompName() 

reqMove 
extReceive(message,agent) 

getCompList/list=getCompList()AcompList(list) 

reestablish 
compStarted=reestablish(stateInfo) 

determineRecipient 
c=getComponent(message) 

[c==null] 

startComp 
c=createComp(message) 

[c!=null] 

updateComponentList 
addCompList(c) 

Figure 28. Design Option 1 Agent Component for MASS System 

However, there are a few additions due to mobility. If the parameter statelnfo is null then the 

agent starts by transitioning to the startPersistentComps state. If statelnfo is not null, then the agent starts 

with a transition to the reestablish state. In this state all of the active components at the time of the move 

are restarted into the proper state. If there is a problem starting the components then the agent terminates. 
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If not, the agent transitions to the idle state. If a getCompList internal message is received from a mobile 

component the agent component retrieves the list and sends it to the requesting component. Then, when a 

reqMove message is received from a mobile component the agent component transitions to the 

moveReceived state. The agent component state is saved, sent to the mobile component and the agent 

component terminates. 

2.2.5.2 Design Option 2 

In this option a Move component is created from the Move task that is part of the MobileSearcher 

agent class. Figure 29 shows the Move component for the MASS system. The move component is a 

transient component and is only started after the agent has moved or a mobile component has requested a 

move. In the MASS system, once the Search component has requested a move the process to move is 

exactly the same as it was for the Search component in design option one. 

Figure 30 shows the corresponding Search component for this option. This component was 

unchanged by the transformations defined in [18] but there are numerous mobility additions. The 

component is started by an internal message from the agent component that contains the statelnfo for the 

component. If the statelnfo is null then that implies that the component has just been created for the first 

time with a do(task) message from the Bidder component. If the statelnfo is not null, then the agent has 

moved and the component is being restarted at the new location. 
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start(statelnfo) 

fNOT compsStartedl restore 
compsStarted=restore(stateInfo) 

reqMove(dest,comp,stateInfo)[compsStarted and stateInfo==null] 

[denied]AmoveDenied(reason) moveDecision 
denied=moveDecision() 

update 
stateInfo=saveState(stateInfo) 

list=remove(list.comp) 

[NOTdenied]Aterminate(comp);getCompList() 

waitForCompList 

ready(statelnfo.comp) compList(list) 

rNOTisEmptyl/broadCast(moveReq.list) checkSize 
isEmpty=size(list) 

[ isEmpty] 

fsize(list)<=01 trvMove 
stateInfo=saveState(stateInfo) 
<moved,reason>=move(dest) 

fNOT movedl 

[moved] 

Figure 29. Design Option 2 Mobility Component for MASS System 

The component transitions into the search state if the move was successful. But if the move was 

unsuccessful, a sorry message is sent to the Bidder component and the Search component terminates. 

However, if the Search component has just been created with a new search task, the compare function in 

the moveNeeded state determines whether a move is needed in order to fulfill the search request. If a move 

is needed the component transitions into the moveCalled state where the state of the component is saved 

and an internal reqMove message is sent to the Move component.   If the move is approved, a terminate 

message is received from the Move component and the component terminates.  If the move is denied, the 

component sends a sorry message to the Bidder component and terminates. 
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o- start(slatelnfo) 
restore 

currentLocation=checkLocation() 
<state.reason>=restart(stateInfo.currentLocation) 

do(task)[state==moveNeeded] 

[needMove] 

trvMove 

moveNeeded 
dest=searchDestination(task) 

currentLocation=checkLocation() 
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[NOT needMove] 

search 
<results,reason>=find(searchTask) 

[state==search] 
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moveReceived 
stateInfo=saveCompState() 

comp=getCompName() 
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moveCalled 
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comp=getCompName() 

AreqMove(dest,comp,stateInfo) 
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Figure 30. Design Option 2 Search Component for MASS System 

2.2.5.3 Design Option 3 

In this option the Agent component handles the move for the agent. Figure 31 shows the Agent 

component for this option. The Search component is exactly the same as for design option 2. There are 

two possible transitions that can be triggered on startup of the agent component. If statelnfo is null, then 

the agent has just been instantiated and the agent component transitions to the startPersistentComps state. 

If statelnfo is not null, then the agent has moved and the agent component transitions to the reestablish 

state. All of the components that were active when a move was called on the previous address are restarted 

and the agent component transitions to the idle state. 

When the agent component receives an internal request move message (reqMove) the agent 

component transitions to the moveDecision state. As was the case with the two previous design options the 

designer can include agent-moving logic in the decision function within the moveDecision state. If the 
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move is denied then the agent component sends an internal move denied message (moveDenied) to the 

component that called for the move. If the move is not denied then the agent component transitions to the 

buildComponentList state. 

[NOT compsStarted] 

[NOT started] startPersistentComps 
started=startComps() 

[stateInfo==null] 
^ 

[started] 

extReceive(terminate,agent) 

[statelnfo!=null] 
 T 

reestablish 
compsStarted=restore(stateInfo,moved,reason) 

idle 

[compsStarted] 

extReceive(message.agent) 

[denied]AmoveDenied(reason) 
[c!=null]/relay(message,c) 

[moved] 

determineRecipient 
c=getComponent( message) 

movePecision 
<reason,denied>=decision() 

[c==null 

[NOT denied]Aterminate(comp) 

startComp 
c=createComp(message) 

buildComponentList 
list=getCompList() 

list=remove(comp,list)    t 

[c!=null] 

fsize(list)>OVbroadCast(moveReq,list) 

[size(list)<=0] 

trvMove 
stateInfo=saveState(stateInfo) 
<reason,moved>=move(dest) 

[size(list)<=0] 

updateComponentList 
addCompList(c) 

ready(stateInfo,comp) 

update 
stateInfo=saveState(stateInfo) 

list=remove(list,comp) 

[NOT moved] 

Figure 31. Design Option 3 Agent Component for MASS System 

The getCompList function in the buildComponentList state returns a list of all of the active 

components. The agent component has access to all of the agents' methods so it can call the getCompList 

function directly whereas the search and move components in the previous design options had to send 

messages to the agent component requesting that information. 

The component that called for the move is removed from the list because the statelnfo for that 

component has already been received. If the list of active components is not empty then each active 

component is sent an internal moveReq message. Once a reply is received from a component that 

component is removed from the list. When the list is empty the agent component saves state for itself and 
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calls the move method that interfaces with the mobile agent system to perform the move. If the move fails 

the agent component transitions to the reestablish state and the components are restarted in the proper state. 

If the move is successful the mobile agent system will shutdown the agent component on the pre-move 

address and restart the agent component on the new address. 

2.3 Selection of Analysis and Design Options for Mobility 

Selecting the best option for either phase was determined by examining the advantages and 

disadvantages of each option as well as the relationships between the options. Analysis option 1 was 

selected over analysis option 2 because it did not restrict the design choice, as did analysis option 2. All of 

the design options were feasible if option 1 was selected whereas only design option 2 would have been 

feasible for the design phase if option 2 were selected. Analysis option 1 was also contained in only one 

step of the analysis phase while option 2 could affect every analysis phase step. Therefore, option 1 left the 

majority of the moving details to be handled in the design phase, which reduced the complexity of the 

analysis. Option 1 also allowed for the additional move specification described in Section 2.1. 

Since analysis option 1 was selected, as was mentioned above, any design choice was possible. 

However, design option 3 was selected for the following reasons. It does not duplicate moving 

functionality similar to option 1 or require an additional component to be added to the system as did option 

2. Option 3 kept the overall decision process for moving an agent in the agent component, not in the other 

components like options 1 and 2. Options 1 and 2 gave mobile components a certain amount of power over 

the other components whereas option 3 kept the power in the agent component. Option 3 also had the 

lowest communication overhead as opposed to options 1 and 2 during the moving process. 

2.4 Summary 

Each phase and step of the MaSE methodology was examined to determine where mobility should 

be incorporated. A way of specifying mobility was already present in the MaSE analysis phase but needed 
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to be expanded. After adding the new functionality, two analysis phase mobility options were explored in 

detail with advantages and disadvantages given for each option. 

In contrast, there was no existing way of specifying mobility in the design phase even though 

mobility could be present in the analysis phase. But, with the creation of mapping between the concurrent 

tasks and existing agent component architecture, mobility was then carried over from the analysis phase to 

the design phase. However, even with these changes the new models in the design phase needed additional 

functionality in order to properly handle mobility. Three different options for adding this functionality 

were presented and analyzed according to their advantages and disadvantages. 

Finally, the best options for both the analysis and design phases were selected. In Chapter III, the 

transformations needed to add mobility to the analysis and design models of MaSE are defined. 
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///. Design 

This chapter presents the transformations that incrementally add mobility functionality to the 

agent architecture. Section 3.1 presents the transformations developed to change the generic agent 

architecture design model into a generic mobility design model. Section 3.1.2 presents the analysis phase 

transformations while Section 3.1.3 presents the design phase transformations. 

3.1 Transformations 

Now that the best options for adding mobility functionality to the MaSE methodology have been 

selected, formal transformations can now be defined to first complete the conversion of the analysis models 

to design models. The transformation process is shown graphically in Figure 32. 

Analysis 
to 

Design 

Design 
to 

Design 

Code 
Generation 

Analysis 
Models 

T 
-> Transformations 

Generic Design 
Models 

Mobility 
Transformations 

Mobile Design 
Models 

Code 
Generation 

Code 
Generation 

Carolina 
Implementation 

Aglets 
Implementation Implementation 

Figure 32. MaSE Transformation Architecture 

The analysis-to-design transformations are composed of the transformation process defined by 

Sparkman [18], including a transformation to ensure move activities remain in component state tables, and 
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the transformations that create the agent component for each agent class as defined in the following 

sections of this chapter. The design-to-design transformations can consist, for example, of mobility 

transformations (as defined in subsequent sections of this chapter), security transformations, or 

communication protocol transformations. Only mobility transformations are discussed in this thesis. 

Software code generation (a future research area) for mobile agent systems can be accomplished once the 

mobile design models are complete. 

In order to define formal transformations, the models used in those transformations must be 

formally defined as well. These models are required to have exact semantics to guarantee predictable 

behavior of the transformations. The models used in this thesis are a subset of the models defined by 

Sparkman [18] and are discussed in detail in Appendix B. 

3.1.1 Transformation Functions 

Before defining the transformations, eight functions that determine what type of components exist 

had to be defined and are listed below: 

1. Function isConversation_Before returns true if there is a start but no end of a conversation 

before a state containing a move activity. 

2. Function hasTransientComponent returns true if there is at least one transient component in an 

agent class. 

3. Function hasPersistentComponent returns true if there is at least one persistent component in 

an agent class. 

4. Function isMobility_Specified returns true if mobility has been specified in at least one 

component within an agent class. 

5. Function isMobility_Specified_Component returns true if mobility has been specified in a 

given component. 
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6. Function isMobility_Specified_State returns true if mobility has been specified in a given 

state. 

7. Function mobileComponentCount counts how many components have a move activity 

specified within a mobile agent class. 

8. Function isTransientComponent returns true if a given component is transient. 

They are defined as follows. 

function isConversation_Before (t: Transition) returns boolean 
Precondition : 
Postcondition : 
(t.start = true A t.end = false) v (3 t2 : Transition • t2.to = t.from A isMove_Conversation(t2)) 

function hasTransientComponent (ag : Agent) returns Boolean 
Precondition: true 
Postcondition: 
3 c : Component, st: StateTable, s : State, t: Transition • 
(c e ag.components A st = c.stateTable A s e st.states A s.name = start A t e st.transitions A 

t.from = s A (t.receive != null v t.receiveEvent != null)) 

function hasPersistentComponent (ag : Agent) returns boolean 
Precondition : true 
Postcondition : 
3 c : Component, st: StateTable, s : State, t: Transition • 
(c e ag.components A st = c.stateTable ASE st.states A s.name = "start" Ate st.transitions A 

t.from = s A t.receive == null A t.receiveEvent == null) 

function isMobility_Specified (ag : Agent) returns boolean 
Precondition: true 
Postcondition: 
3 c : Component, st: StateTable, s : State, a: Action, f: FunctionCall • 
(c e ag.components A c.name = "AgentComponent" A st = c.stateTable ASS st.states A 

a e s.actions A a.rhs = f A f.name = "move") 

function isMobility_Specified_Component (c : Component) returns boolean 
Precondition: true 
Postcondition: 
3 st: StateTable, s : State, a : Action, f: FunctionCall • 
(st = c.stateTable A s e st.states A a e s.actions A a.rhs = f A f.name = "move") 
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function isMobility_Specified_State (s : State) returns boolean 
Precondition : true 
Postcondition: 
3 a : Action, f: FunctionCall • 
(a G s.actions A a.rhs = f A f.name = "move") 

function mobileComponentCount (ag : Agent) returns integer 
Precondition : integer intMobileComponentCount = 0 
Postcondition: 
V c : Component, st: StateTable, s : State, a : Action, f: FunctionCall • 
(c G ag.components A c.name * "AgentComponent" A st = c.stateTable A 

(3 s : State, a : Action f: FunctionCall • s G ststates A a e s.actions A a.rhs = f A 

f.name = "move")) 
=> 
(intMobileComponentCount = intMobileComponentCount + 1) 

function isTransientComponent (c : Component) returns boolean 
Precondition: true 
Postcondition: 
3 st: StateTable, t: Transition • 
(st = c.stateTable A t G st.transitions A t.from = "StartState" A (t.receive * null v t.ReceiveEvent ^ 
null)) 

3.1.2 Analysis to Design 

To complete the analysis-to-design transformation process, move activities need to be carried over 

from the analysis phase to the design phase and the agent component needs to be created for each agent 

class. A transformation was created to ensure that move activities remain in component state tables and are 

not placed into conversations. This transformation is inserted into Stage 2 of the transformation process 

defined by Sparkman [18]. After that special case has been handled, transformations that build the agent 

component are defined. 

3.1.2.1 Ensuring Mobility Remains in Component 

In a component state table, a check is needed to ensure that all states that contain a call to the 

move activity remain in the component state table and do not get placed into a conversation. This could 

happen if an external SendEvent or ReceiveEvent for a conversation occurs in a component before a state 

with a move activity and there is an external ReceiveEvent or SendEvent pertaining to that same 

conversation that occurs after the move state. The component state diagram shown in is the result of 
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performing transformation 25, 26 27 or 28 [18]. If left like this, "state n" would end up in a conversation, 

which, as discussed in Section 2.2.2, is not allowed in the new MaSE agent architecture. 

S ' > E receive(message,agent) 
 H State n 

moved=move(dest) 

[moved]Asend(message,agent) 
 ► 

Figure 33. Example Component After Transformation Defined by [18] 

Therefore, if there is a start but no end of a conversation before a state containing a move activity 

then the transition to the move state is labeled as the end of the conversation and the corresponding 

transition after the move state is labeled as the start of new conversation. Transformation 28a adds the end 

conversation markers to the transitions before the move state and the end conversation markers to the 

transitions following the move state. Figure 34 shows the component from Figure 33 after transformation 

28a is complete. 

Transformation 28a 

V s : State • 
(isMobility_Specified_State(s) A (3 t: Transition • t.to = s A isConversationJBefore(t)) 
=> 
(V (t2 : Transition • t.to = s => t.end = true) 

S Er 
receive(message,agent) 
 H State n 

moved=move(dest) 

[moved]Asend(message,agent) 
 ► 

Figure 34. Example Component Diagram From Figure 32 After Transformations 28a 

3.1.2.2 Agent Component 

Next, the creation of the agent components for all the agent classes in the system is required even 

if mobility has not been specified in any components. The following table determines which Agent 

Component Transform (ACT) is executed given the agent type, component types, and whether or not 

mobility is specified. The transformations build the agent component in accordance with the functionality 

defined in Chapter II Sections 2.2.1.1, 2.2.1.2,2.2.1.3 and 2.2.1.4. 

50 



Table 1. Agent Component Transformations 

Mobile Type of Components ACT Transformations Needed 
Yes Transient 1,2 

No 1,2,3 

Yes Persistent 1,4,6,7 

No 1,4,6,7,9 

Yes Transient and Persistent 1,2,5,8 

No 1,2,5,8,9 

3.1.2.2.1 Agent Component Transform 1 

Agent Component Transform 1 (ACT1) creates the basic agent component, as presented in Section 

2.2.1.1, regardless of the types of components possessed by an agent class. This transform adds the start, 

end, idle and determineRecipient states as well as the transitions for handling agent termination and 

external messages to start conversations or components. Figure 35 shows the agent component after the 

ACT1 transform is complete. 

ACT1 

V ag : Agent • 
=> 
(3 ac : Component, st: StateTable, tl, t2, t3, t4: Transition, si, s2, s3, s4 : State, se : SendEvent, rel, re2 : 
ReceiveEvent, al, a2 : Action, el, e2, e3 : Event, f 1, f2 : FunctionCall, pi, p2, p3 : Parameter • 
p 1 .name = "agent" A p2.name = "message" A p3.name = "c" A f 1 .name = "getComponent" A 

fl.parameters = [p2] A f2.name = "relay" A f2.parameters = [p2,p3] A el.name = "message" A 

e 1 .parameters = [] A e2.name = "send" A e2.parameters = [p2] A e3.name = "terminate" A e3.parameters = [] A 

al.lhs = "c" A al.rhs = f 1 A a2.1hs = null A a2.rhs = f2 A rel.event = el A rel.sender = pi A rel.protocol = {} A 

re2.event = e3 A re2.sender = pi A re2.protocol = {} A se.event = el A se.recipient = pi A se.protocol = {} A 

se.convID = null A s 1 e st.states A s 1 .name = "start" A s 1 .actions = [] A s 1 .convIDs = {} A s2 e st.states A 

s2.name = "idle" A s2.actions = [] A s2.convIDs = {} A s3 e st.states A s3.name = "determineRecipient" A 

s3.actions = [al] A s3.convIDs = {} A S4 E st.states A s4.name = "end" A s4.actions = [] A s4.convIDs = {} A 

tl e st.transitions A tl.from = s2 A tl.receive = null A 11 .receiveEvent = rel A tl.guard = null A tl.to = s3 A 

tl .actions = [] A tl .sends = {} A tl .sendEvents = {} A tl .start = false A tl .end = false A tl .convIDs = {} A 

tl.AgentID = null A t2 e st.transitions A t2.from = s3 A t2.receive = null A t2.receiveEvent = null A 

t2.guard = "c!=null" A t2.to = s2 A t2.actions = [a2] A t2.sends = {} A t2.sendEvents = {} A t2.start = false A 

t2.end = false A t2.convIDs = {} A t2.AgentID = null At3 e st.transitions A t3.from = s2 A t3.receive = e2 A 

t3.receiveEvent = null A t3.guard = null A t3.to = s2 A t3.actions = [] A t3.sends = {} A t3.sendEvents = {se} A 

t3.start = false A t3.end = false A t3.convIDs = {} A t3.AgentID = null A t4 e st.transitions A t4.from = s2 A 

t4.receive = null A t4.receiveEvent = re2 A t4.guard = null A t4.to = s4 A t4.actions = [] A t4.sends = {} A 

t4.sendEvents = {} A t4.start = false A t4.end = false A t4.convIDs = {} A t4.AgentID = null A 

st = ac.stateTable A ac e ag'.components A ac i ag.components A ac.name = "AgentComponent") 
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extReceivef terminate.agent) 
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ex t Receive < message ,agen t) 
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y r 

detennineRecipicnt 
c=getComponent(message) 

Figure 35. Agent Component Diagram After ACT 1 Transformation 

3.1.2.2.2 Agent Component Transform 2 

Agent Component Transform 2 (ACT2) adds the logic, as presented in Section 2.2.1.2, that 

handles starting transient components and handling the receipt of invalid messages from other agents to the 

agent component. Figure 36 shows the agent component diagram after the ACT2 transform is complete. 

ACT 2 

V ag : Agent, c : Component, st: StateTable, is, drs : State • 
(c = ag.component A st = c.StateTable A is e st.states A is.name = "idle" A drs e st.states A 

drs.name = "determineRecipient" A hasTransientComponent(ag)) 
=> 
(3sl,s2: State, tl, t2,t3, t4: Transition, a 1, a2 : Action, fl, f2, f3 : FunctionCall, pl,p2, p3 : Parameter • 
pi.name = "message" A p2.name = "c" A p3.name = "agent" A fl.name = "createComp" A fl .parameters = [pi] A 

f2.name = "addCompList" A f2.parameters = [p2] A ß.name = "sorry" A ß.parameters = [p3] A al.lhs = "c" A 

al.rhs = fl A a2.1hs = null A a2.rhs = f2 A a3.1hs = null A a3.rhs = f3 A si e st'.states A si.name = "startComp" A 

sl.actions = [al] A sl.convIDs = {} A s2 e st'.states A s2.name = "updateComponentList" A s2.actions = [a2] A 

s2.convIDs = {} A tl e st'.transitions A tl.from = drs A tl.receive = null A tl.receiveEvent = null A 

tl.guard = "c==null" A tl.to = si A tl.actions = [] A tl.sends = {} A tl.sendEvents = {} A 11.start = false A tl.end 
= false A tl.convIDs = {} A tl.AgentID = null A t2 e st'.transitions A t2.from = si A t2.receive = null A 

t2.receiveEvent = null A t2.guard = "c==null" A t2.to = s2 A t2.actions = [a3] A t2.sends = {} A 

t2.sendEvents = {} A t2.start = false A t2.end = false A t2.convIDs = {} A t2.AgentID = null A 

t3 6 st'.transitions A t3.from = si A t3.receive = null A t3.receiveEvent = re2 A t3.guard = "c!=null" A 

t3.to = s2 A t3.actions = [] A t3.sends = {} A t3.sendEvents = {} A t3.start = false A t3.end = false A 

t3.convIDs = {} A t3.AgentID = null A t4 e st'.transitions A t4.from = s2 A t4.receive = null A 

t4.receiveEvent = re2 A t4.guard = null A t4.to = is A t4.actions = [] A t4.sends = {} A t4.sendEvents = {} A 

t4.start = false A t4.end = false A t4.convIDs = {} A t4.AgentID = null) 
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updateComponentList 
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Figure 36. Agent Component Diagram After ACT2 Transformation 

3.1.2.2.3 Agent Component Transform 3 

Agent Component Transform 3 (ACT3) adds, as presented in Section 2.2.1.4, the transition from 

the start state to the idle state, if the components of an agent class are transient only and do not contain 

move activities, to the agent component. Figure 37 shows the agent component diagram after the ACT3 

transform is complete. 

ACT 3 

V ag : Agent, c : Component, st: StateTable, is, ss : State • 
(c = ag.component A st = c.stateTable A is e st.states A is.name = "idle" A ss e st.states A ss.name = "start" A 

-ihasPersistentComponent(ag) A -,isMobility_Specified(ag)) 
=> 
(3 t: Transition • 
t e st'.transitions A t.from = ss A t.receive = null A t.receiveEvent = null A t.guard = null A t.to = si A 

t.actions = [] A t.sends = {} A t.sendEvents = {} A t.start = false A t.end = false A t.convIDs = {} A 

t.AgentID = null) 
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f                               \ extReceive(message,agent) 

idle *•- 

h                 \ ■\J 

\                \ 
\                      "^ 

determineRecipient 
c=getComponent(message) 

\             [c==null]/sorry(agent) [c==null] 

^^^— 
startComn 

c=createComp(message) 

[c!=nu11 ] 

updateComponentList 
addCompList(c) 

Figure 37. Agent Component Diagram After ACT3 Transformation 

3.1.2.2.4 Agent Component Transform 4 

Agent Component Transform 4 (ACT4) adds the logic, as presented in Section 2.2.1.3, that 

handles received messages not belonging to the agent to the agent component. Figure 38 shows the 

proactive agent component diagram after the ACT4 transform is complete. 

ACT 4 

V ag : Agent, c : Component, st: StateTable, is, drs: State • 
(c = ag.component A st = c.stateTable A is e st.states A is.name = "idle" A drs e st.states A 

drs.name = "determineRecipient" A -ihasTransientComponent(ag)) 

(3 t: Transition, a : Action, f: FunctionCall, p : Parameter • 
p.name = "agent" A f.name = "sorry" A f.parameters = [p] A a.lhs = null A a.rhs = f A t e st'.transitions A 
t.from = drs A t.receive = null A t.receiveEvent = null A t.guard = "c==null" A t.to = is A t.actions = [a] A 
t.sends = {} A LsendEvents = {} A t.start = false A tend = false A t.convIDs = {} A t.AgentID = null) 
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' extReceive(message,agent) 
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c==mill |/sorrv(agent) 

Figure 38. Agent Component Diagram After ACT4 Transformation 

3.1.2.2.5 Agent Component Transform 5 

Agent Component Transform 5 (ACT5) adds the logic, as presented in Section 2.2.1.3, to start all 

persistent components on agent creation without setting a time interval to the agent component. This 

transform is executed on agents with both transient and persistent components. Figure 39 shows the agent 

component diagram after the ACT5 transform is complete. 

ACT 5 

V ag : Agent, c : Component, st: StateTable, es: State • 
(c = ag.component A st = c.StateTable A es e st.states A es.name = "end" A -ihasTransientComponent(ag)) 
=> 
(3 s: State, t: Transition, a : Action, f: FunctionCall • 
f.name = "startComps" A f.parameters = [] A a.lhs = "started" A a.rhs = f A s e st'.states A 
s.name = "startPersistentComps" A s.actions = [al] A s.convIDs = {} A t e st'.transitions A t.from = s A 
t.receive = null A t.receiveEvent = null A t.guard = "NOT started" A t.to = es A t.actions = [] A t.sends = {} A 
t.sendEvents = {} A t.start = false A t.end = false A t.convIDs = {} A t.AgentID = null) 
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extReceive(terminate,agent) 
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extReceive(message,agent) 
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determineRecipient 

c=getComponent(message) 

Figure 39. Agent Component Diagram After ACTS Transformation 

3.1.2.2.6 Agent Component Transform 6 

Agent Component Transform 6 (ACT6) adds the logic, as presented in Section 2.2.1.3, to start all 

persistent components to the agent component. This transformation is executed on agents that only contain 

persistent components. Figure 40 shows the agent component diagram after the ACT6 transform is 

complete. 

ACT 6 

V ag : Agent, c : Component, st: StateTable, es : State • 
(c = ag.component A st = c.stateTable A es e st.states A es.name = "end" A -.hasTransientComponent(ag)) 
=> 
(3 s : State, t: Transition, al, a2 : Action, fl, f2 : FunctionCall • 
f 1 .name = "startComps" A f 1 .parameters = [] A ß.name = "getSleepTime" A ß.parameters = [] A 

al.lhs = "started" A al.rhs = f A a2.1hs = "time" A a2.rhs = f2 A s e st'.states A 

s.name = "startPersistentComps" A s.actions = [al] A s.convIDs = {} A t e st'.transitions A t.from = s A 

t.receive = null A t.receiveEvent = null A t.guard = "NOT started" A t.to = es A t.actions = [] A t.sends = {} A 

t.sendEvents = {} A t.start = false A t.end = false A t.convIDs = {} A t.AgentID = null) 
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Figure 40. Agent Component Diagram After ACT6 Transformation 

3.1.2.2.7 Agent Component Transform 7 

Agent Component Transform 7 (ACT7) adds the logic, as presented in Section 2.2.1.3, to 

periodically check the persistent components to see if they are still alive to the agent component. This 

transform is executed on agents with only persistent components. Figure 41 shows the agent component 

diagram after the ACT7 transform is complete. 

ACT 7 

V ag : Agent, c : Component, st: StateTable, is, es : State • 
(c = ag.component A st = c.StateTable A is € st.states A is.name = "idle" A es e st.states A 

es.name = "end" A spcs e st.states A spcs.name = "startPersistentComps" A -ihasTransientComponent(ag)) 
=> 
(3 s: State, tl,t2, t3, t4: Transition, a 1, a2, a3 : Action, fl, f2, f3 : FunctionCall, p 1, p2 : Parameter • 
p 1 .name = "time" A p2.name = "time" A f 1 .name = "checkActiveComps" A f 1 .parameters = [] A 

f2.name = "setTimer" A ß.parameters = [pi] A O.name = "setTimer" A ß.parameters = [p2] A 

al.lhs = "active" Aal.rhs = fl A a2.1hs = "t" A a2.rhs = f2 A a3.1hs = "t" A a3.rhs = f3 AS e st'.states A 

s.name = "checkComps" A s.actions = [al] A s.convIDs = {} A tl e st'.transitions A tl.from = is A 

tl.receive = null A tl.receiveEvent = null A tl.guard = "timeout(t)" A tl.to = s A tl.actions = [] A tl.sends = {} A 

tl .sendEvents = {} A tl .start = false A tl .end = false A tl .convIDs = {} A tl .AgentID = null A 

t2 e st'.transitions A t2.from = s A t2.receive = null A t2.receiveEvent = null A t2.guard = "active" A t2.to = is A 

t2.actions = [a2] A t2.sends = {} A t2.sendEvents = {} A t2.start = false A t2.end = false A t2.convIDs = {} A 

t2.AgentID = null A t3 e st'.transitions A t3.from = s A t3.receive = null A t3.receiveEvent = null A 

t3.guard = "NOT active" A t3.to = es A t3.actions = [] A t3.sends = {} A t3.sendEvents = {} A t3.start = false A 

t3.end = false A t3.convIDs = {} A t3.AgentID = null A t4 € st'.transitions A t4.from = spcs A t4.receive = null A 

t4.receiveEvent = null A t4.guard = "started" A t4.to = is A t4.actions = [a] A t4.sends = {} A 

t4.sendEvents = {} A t4.start = false A t4.end = false A t4.convIDs = {} A t4.AgentID = null)) 
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Figure 41. Agent Component Diagram After ACT7 Transformation 

3.1.2.2.8 Agent Component Transform 8 

Agent Component Transform 8 (ACT8) adds, as presented in Section 2.2.1.4, the transition from 

the startPersistentComps state to the idle state without adding the functionality to periodically check the 

status of the components as in the ACT7 transform. This transform is executed on agents with transient 

and persistent components. Figure 42 shows the agent component diagram after the ACT8 transform is 

complete. 

ACT 8 

V ag : Agent, c : Component, st: StateTable, is, spes : State • 
(c = ag.component A st = c.stateTable A is e st.states A is.name = "idle" A spes e st.states A 
spcs.name = "startPersistentComps" A hasTransientComponent(ag) A hasPersistentComponent(ag)) 
=> 
(3 t: Transition • 
t e st'.transitions A t.from = spes A t.receive = null A t.receiveEvent = null A t.guard = "started" A t.to = is A 
t.actions = [] A t.sends = {} A t.sendEvents = {} A t.start = false A t.end = false A t.convIDs = {} A 
t.AgentID = null) 
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Figure 42. Agent Component Diagram After ACT8 Transformation 

3.1.2.2.9 Agent Component Transform 9 

Agent Component Transform 9 (ACT9) adds, as presented in Section 2.2.1.4, the transition from 

the start state to the startPersistentComps state, if the agent class contains at least one persistent component 

and no move activities, to an agent component. Figure 43 shows the agent component diagram after the 

ACT9 transform is complete. 

ACT 9 

V ag : Agent, c : Component, st: StateTable, spcs, ss : State • 
(c = ag.component A st = c.stateTable A spcs e st.states A spcs.name = "startPersistentComps" A ss e st.states A 

ss.name = "start" A hasPersistentComponent(ag) A -.isMobility_Specified(ag)) 
=> 
(3 t: Transition • 
t e st'.transitions A t.from = ss A t.receive = null A t.receiveEvent = null A t.guard = null A t.to = spcs A 

t.actions = [] A t.sends = {} A t.sendEvents = {} A t.start = false A Lend = false A t.convIDs = {} A 

t.AgenfID = null) 
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extReceive(terminate,agent) 
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extReceive(mess age.agent) 

ir 

^^ 
determineRecipient 

c=getComponent(message) 

Figure 43. Agent Component Diagram After ACT9 Transformation 

3.1.2.3 Summary 

Analyses to design transformations were defined that prevented a move activity from being placed 

into a conversation and created an agent component for every agent class in the system. The 

transformations to create the agent component were executed based upon whether or not mobility was 

specified and the types of components contained within each agent class. Now that all of the analysis-to- 

design transformations are complete, the process to define the generic design model to mobile design 

model transformations can be completed. 

3.1.3 Design to Design 

After all of the necessary transformations are executed on the analysis models, the next set of 

transformations deals with adding mobility functionality to all of the components including the agent 

component of a mobile agent class. The first group of transformations incrementally adds mobility 

functionality to the agent component. Then, the transformations for adding mobility functionality to the 

other components belonging to a mobile agent class are defined. 

3.1.3.1 Agent Component Mobility 

The following sections cover the transformations that add the mobility functionality to the agent 

component as was described in Section 2.2.4.3.    Table 2 defines which agent component mobility 
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transformations (ACMT) are executed for each agent class. The type of components contained within an 

agent class determines which ACMT transformations will be executed on that class. As shown in Table 2, 

the first four transformations are executed automatically while transformations 5 and 6 are executed 

depending on component type. Since transformations 1 through 4 are executed automatically, they could 

have been combined into one transformation. They were separated to ease understanding and readability. 

Table 2. Agent Component Mobility Transformations 

Type of Components ACMT Transformations Needed 
Transient 1,2,3,4,5 
Persistent 1,2,3,4,6 

Transient and Persistent 1,2,3,4,6 

3.1.3.1.1 Agent Component Mobility Transform 1 

Agent Component Mobility Transform 1 (ACMT1) adds, as presented in Section 2.2.4.3, the 

states needed for mobility to the agent component. Figure 44 shows the agent component diagram after the 

ACMT1 transform is complete. 

ACMT1 

V ag : Agent, c : Component, st: StateTable • 
(c £ ag.components A c.name = "AgentComponent" A st = c.stateTable A isMobility_Specified(c)) 
=> 
(3 si, s2, s3, s4, s5, s6 : State, al, a2, a3, a4, a5, a6 : Action, fl, f2, O, f4, f5, f6 : FunctionCall, 
pi, p2, p3, p4, p5, p6 : Parameter • 
pi.name = "statelnfo" A p2.name = "moved" A p3.name = "reason" A p4.name = "dest" A p5.name = "list" A 

p6.name = "comp" A fl .name = "restore" A f 1 .parameters = [pi ,p2,p3] A f2.name = "decision" A 

f2.parameters = [] A f3.name = "getCompList" A O.parameters = [] A f4.name = "move" A 

f4.parameters = [p4] A f5.name = "saveState" A f5.parameters = [pi] A fö.name = "remove" A 

fö.parameters = [p5,p6] A al.lhs = "compsStarted" A al.rhs = fl A a2.1hs = "reason,denied" Aa2.rhs = f2 A 

a3.1hs = "list" A a3.rhs = f3 A a4.1hs = "reason,moved" A a4.rhs = f4 A a5.1hs = "statelnfo" A a5.rhs = f5 A 

aö.lhs = "list" A aö.rhs = f6 A si E st'.states A sl.name = "reestablish" A sl.actions = [al] A sl.convIDs = {} A 

s2 e st'.states A s2.name = "moveDecision" A s2.actions = [a2] A s2.convIDs = {} A s3 e st'.states A 

s3.name = "buildComponentList" A s3.actions = [a3] A s3.convIDs = {} A s4 e st'.states A 

s4.name = "tryMove" A s4.actions = [a4] A s4.convIDs = {} A s5 € st'.states A s5.name = "wait" A 

s5.actions = [] A s5.convIDs = {} A s6 e st'.states A sö.name = "update" A sö.actions = [a5,a6] A 

s6.convIDs = {}) 
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Figure 44. Agent Component Diagram After ACMT1 Transformation 

3.1.3.1.2 Agent Component Mobility Transform 2 

Agent Component Mobility Transform 2 (ACMT2) adds four transitions, as presented in Section 

2.2.4.3, between the idle, moveDecision, buildComponentList and tryMove states to the agent component. 

Figure 45 shows the agent component diagram after the ACMT2 transform is complete. 

ACMT2 

V ag : Agent, c : Component, st: StateTable, is, mds, bcls, tms : State • 
(c £ ag.components A c.name = "AgentComponent" A st = c.StateTable A is e st.states A is.name = "idle" A 

mds e st.states A mds.name = ''moveDecision" A bcls e st.states A bcls.name = "buildComponentList" A 

tms e st.states A tms.name = "tryMove" A isMobility_Specified(c)) 
=> 
(3 tl, t2, t3, t4 : Transition, el, e2, e3, e4 : Event, pi, p2, p3, p4 : Parameter • 
p 1 .name = "dest" A p2.name = "comp" A p3.name = "statelnfo" A p4.name = "reason" A e 1 .name = "reqMove" A 

el.parameters = [pl,p2,p3] A e2.name = "moveDenied" A e2.parameters = [p4] A e3.name = "terminate" A 

e3.parameters = [p2] A e4.name = "saveAgent" A e4.parameters = [p3] A tl £ st'.transitions A tl.from = is A 

tl.receive = el A tl.receiveEvent = null A tl.guard = null A tl.to = mds A tl.actions = [] A tl.sends = {} A 

tl .sendEvents = {} A tl .start = false A tl .end = false A tl xonvIDs = {} A tl .AgentID = null A 

t2 E st'.transitions A t2.from = mds A t2.receive = null A t2.receiveEvent = null A t2.guard = "denied" A 

t2.to = is A t2.actions = [] A t2.sends = {e2} A t2.sendEvents = {} A t2.start = false A t2.end = false A 

t2.convIDs = {} A t2.AgentID = null A t3 £ st'.transitions A t3.from = mds A t3.receive = null A 

t3.receiveEvent = null A t3.guard = "NOT denied" A t3.to = bcls A t3.actions = [] A t3.sends = {e3} A 

t3.sendEvents = {} A t3.start = false A t3.end = false A t3.convIDs = {} A t3.AgentID = null A 

t4 £ st'.transitions A t4.from = bcls A t4.receive = null A t4.receiveEvent = null A t4.guard = "size(list)<=0" A 

t4.to = tms A t4.actions = [] A t4.sends = {e4} A t4.sendEvents = {} A t4.start = false A t4.end = false A 

t4.convIDs = {} A t4.AgentID = null) 
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Figure 45. Agent Component Diagram After ACMT2 Transformation 

3.1.3.1.3 Agent Component Mobility Transform 3 

Agent Component Mobility Transform 3 (ACMT3) adds four transitions, as presented in Section 

2.2.4.3, between the buildComponentList, tryMove, wait and update states to the agent component. Figure 

46 shows the agent component diagram after the ACMT3 transform is complete. 

ACMT3 

V ag : Agent, c : Component, st: StateTable, bcls, tms, ws, us: State • 
(c e ag.components A c.name = "AgentComponent" A st = c.stateTable A bcls e st.states A 

bcls.name = "buildComponentList" A tms e st.states A tms.name = "tryMove" A ws e st.states A 

ws.name = "wait" A us e st.states A us.name = "update" A isMobility_Specified(c)) 
=> 
(3 11, t2, t3, t4: Transition, a : Action, e : Event, f: FunctionCall, p 1, p2, p3, p4: Parameter • 
pi .name = "moveReq" A p2.name = "list" A p3.name = "statelnfo" A p4.name = "comp" A 

f.name = "broadcast" A f.parameters = [pl,p2] A e.name = "ready" A el.parameters = [p3,p4] A al.lhs = null A 

al.rhs = f A tl e st'.transitions A tl.from = bcls A tl.receive = null A 11 .receiveEvent = null A 

tl.guard = "size(list)>0" A tl.to = ws A tl.actions = [a] A tl.sends = {} A tl.sendEvents = {} A tl.start = false A 

tl.end = false A tl.convIDs = {} A tl.AgentID = null A t2 e st'.transitions A t2.from = ws A t2.receive = e A 

t2.receiveEvent = null A t2.guard = null A t2.to = us A t2.actions = [] A t2.sends = {} A t2.sendEvents = {} A 

t2.start = false A t2.end = false A t2.convIDs = {} A t2.AgentID = null A t3 e st'.transitions A t3.from = us A 

t3.receive = null A t3.receiveEvent = null A t3.guard = null A t3.to = ws A t3.actions = [] A t3.sends = {} A 

t3.sendEvents = {} A t3.start = false A t3.end = false A t3.convIDs = {} A t3.AgentID = null A 

t4 € st'.transitions A t4.from = ws A t4.receive = null A t4.receiveEvent = null A t4.guard = "size(list)<=0" A 

t4.to = tms A t4.actions = [] A t4.sends = {} A t4.sendEvents = {} A t4.start = false A t4.end = false A 

t4.convIDs = {} A t4.AgentID = null) 
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Figure 46. Agent Component Diagram After ACMT3 Transformation 

3.1.3.1.4 Agent Component Mobility Transform 4 

Agent Component Mobility Transform 4 (ACMT4) adds five transitions, as presented in Section 

2.2.4.3, between the tryMove, reestablish, start, end and idle states to the agent component. Figure 47 

shows the agent component diagram after the ACMT4 transform is complete. 

ACMT4 

V ag : Agent, c : Component, st: StateTable, es, is, rs, ss, tms : State • 
(c e ag.components A c.name = "AgentComponent" A st = c.StateTable A tms € st.states A 

tms.name = "tryMove" A es e st.states A es.name = "end" A ss e st.states A ss.name = "start" A rs e st.states A 

rs.name = "reestablish" A is e st.states A is.name = "idle" A isMobility_Specified(ag)) 
=> 
(3 tl, t2, t3, t4, t5 : Transition • 
tl e st'.transitions A tl.from = tms A tl.receive = null A tl.receiveEvent = null A 11.guard = "moved" A 

tl.to = es A tl.actions = [] A tl.sends = {} A tl.sendEvents = {} A tl.start = false A tl.end = false A 

tlxonvIDs = {} A tl .AgentID = null A t2 e st'.transitions A t2.from = tms A t2.receive = null A 

t2.receiveEvent = null A t2.guard = "NOT moved" A t2.to = rs A t2.actions = [] A t2.sends = {} A 

t2.sendEvents = {} A t2.start = false A t2.end = false A t2.convIDs = {> A t2.AgentID = null A 

t3 s st'.transitions A t3.from = ss A t3.receive = null A t3.receiveEvent = null A Ö.guard = "stateInfo!=null" A 

t3.to = rs A t3.actions = [] A t3.sends = {} A t3.sendEvents = {} A O.start = false A t3.end = false A 

t3.convIDs = {} A t3.AgentID = null A t4 e st'.transitions A t4.from = rs A t4.receive = null A 

t4.receiveEvent = null A t4.guard = "compsStarted" A t4.to = is A t4.actions = [] A t4.sends = {} A 

t4.sendEvents = {} A t4.start = false A t4.end = false A t4.convIDs = {} A t4.AgentID = null A 

t5 e st'.transitions A t5.from = rs A t5.receive = null A t5.receiveEvent = null A 

t5.guard = "NOT compsStarted" A t5.to = es A t5.actions = [] A t5.sends = {} A t5.sendEvents = {} A 

t5.start = false A t5.end = false A t5.convIDs = {} A t5.AgentID = null) 
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Figure 47. Agent Component Diagram After ACMT4 Transformation 

3.1.3.1.5 Agent Component Mobility Transform 5 

Agent Component Mobility Transform 5 (ACMT5) adds, as presented in Section 2.2.4.3, a final 

transition from the start state to the idle state, if the agent class contains only transient components, to the 

agent component. Figure 48 shows the agent component diagram after the ACMT5 transform is complete. 

ACMT5 

V ag : Agent, c : Component, st: StateTable, is, ss : State • 
(c = ag.component A st = c.stateTable A SS e st.states A ss.name = "start" A is e st.states A is.name = "idle" A 

isMobility_Specified(c) A -ihasPersistentComponent(ag)) 
=> 
(3 t: Transition • 
t 6 st'.transitions A t.from = ss A t.receive = null A t.receiveEvent = null A t.guard = "stateInfo==null" A 

t.to = is A t.actions = [] A t.sends = {} A t.sendEvents = {} A t.start = false A t.end = false A t.convIDs = {} A 

LAgentlD = null) 
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Figure 48. Agent Component Diagram After ACMT5 Transformation 

3.1.3.1.6 Agent Component Mobility Transform 6 

Agent Component Mobility Transform 6 (ACMT6) adds, as presented in Section 2.2.4.3, a final 

transition from the start state to the startPersistentComps state, if the agent class contains at least one 

persistent component, to the agent component. Figure 49 shows the agent component diagram after the 

ACMT6 transform is complete. 

ACMT6 

V ag : Agent, c : Component, st: StateTable, spcs, ss: State • 
(c = ag.component A st = c.StateTable A ss € st.states A ss.name = "start" A spcs s st.states A 
spcs.name = "startPersistentComps" A isMobility_Specified(c) A hasPersistentComponent(ag)) 
=> 
(3 t: Transition • 
t e st'.transitions A t.from = ss A t.receive = null A t.receiveEvent = null A t.guard = "statelnfo==null" A 

t.to = spcs A t.actions = [] A t.sends = {} A t.sendEvents = {} A t.start = false A tend = false A t.convIDs = {} A 
t.AgentID = null) 
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Figure 49. Agent Component Diagram After ACMT6 Transformation 

3.1.3.2 Component Mobility 

Finally, each non-agent component for a mobile agent class is transformed according to the table 

below. Even though most of the transformations are executed for each component type, they were broken 

into smaller pieces for ease of readability. 

Table 3. Component Mobility Transformations 

Component Persistent Transient # of mobile End CMT Transformations Needed 
Mobile Yes No Yes Yes 3,4,5,6,7,8,9,10 

1 1 1 1 No 1,3,4,5,6,7,8,9,10 

1 1 1 No Yes 3,4,5,6,8,9 

1 i I i No 1,3,4,5,6,8,9 

1 No Yes Yes/No Yes 3,4,5,6,7,8,9,10 

i -I i 1 No 1,3,4,5,6,7,8,9,10 

Non-Mobile Yes/No Yes/No Yes/No Yes 2,7,9,10 

i Yes/No Yes/No Yes/No No 1,2,7,9,10 
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3.1.3.2.1 Component Mobility Transform 1 

Component Mobility Transform 1 (CMT1) adds an end state to any component that belongs to a 

mobile agent that does not already have an end state.    This end state is unreachable at this point but is 

needed due to the fact that all components belonging to a mobile agent will need to terminate regardless of 

component type. 

CMT1 

V ag : Agent, c : Component, st: StateTable, s: State • 
(c E ag.components A c.name * "AgentComponent" A st = c.stateTable A isMobility_Specified(ag) A -I(3 S : 
State • s e st.states A s.name £ "EndState")) 
=> 
(3 es : State • es e st'.parameters A es i st.parameters A es.name = "EndState") 

3.1.3.2.2 Component Mobility Transform 2 

Component Mobility Transform 2 (CMT2) adds a transition from the start state to the restore state 

for all non-mobile components belonging to a mobile agent class. The transition from the start state to the 

restore state is needed to ensure that the component is started correctly after an agent move has occurred. 

This transition is an internal message containing the statelnfo that the component saved before it was 

terminated for the move. The restart function in the restore state takes the statelnfo that is passed into the 

component upon creation and determines the starting state for the component. The value of the Boolean 

variable state is used to transition from the restore state to the proper state for continued execution. Figure 

50 shows the restore state and transition that are added to a non-mobile component by CMT2. 

CMT2 

V ag : Agent, c : Component, st: StateTable, ss : State • 
(c 6 ag.components A c.name £ "AgentComponent" A st = c.stateTable A ss e st.states A 

ss.name = "StartState" A isMobility_Specified(ag) A -iisMobility_Specified_Component(c)) 
=> 
(3 s : State, t: Transition, e : Event, a : Action, f: FunctionCall, p : Parameter • 
p.name = "statelnfo" A f.name = "restart" A f.parameters = [p] A a.lhs = "state" A a.rhs = f A e.name = "start" A 
e.parameters = [p] A s e st'.states AS« st.states A s.name = "restore" A s.actions = [a] A t e st'.transitions A 
t e st.transitions A t.from = ss A t.receive = e A t.receiveEvent = null A t.guard = null A t.to = s A t.actions = [] A 
t.sends = {} A t.sendEvents = {} A t.start = null A tend = null A t.convIDs = {} A t.AgentID = null) 
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Figure 50. State and Transition Added to Non-Mobile Components by CMT2 

3.1.3.2.3 Component Mobility Transform 3 

Component Mobility Transform 3 (CMT3) adds with the same transition a different restore state 

to all mobile components in a mobile agent class. The checkLocation function in the restore state returns 

the current address for the agent. The result of this function is used in conjunction with the statelnfo to 

determine the starting state for the component. If the statelnfo is null then the agent has not moved. But if 

statelnfo is not null then the agent has moved and the state of the component was saved prior to that move. 

The Boolean variable state is used to transition from the restore state to the proper starting state for the 

component. Figure 51 shows the restore state and transition that are added to a mobile component by 

CMT3. 

CMT3 

V ag : Agent, c : Component, st: StateTable, ss : State • 
(c G ag.components A c.name * "AgentComponent" A st = c.StateTable A ss e st.states A 

ss.name = "StartState" A isMobility_Specified(ag) A isMobility_Specified_Component(c)) 
=> 
(3 s : State, t: Transition, e : Event, al, a2 : Action, fl, f2 : FunctionCall, pi, p2 : Parameter • 
pi.name = "statelnfo" A p2.name = "currentLocation" A fl.name = "checkLocation" A fl .parameters = [] A 

f2.name = "restart" A f2.parameters = [pl,p2] A al.lhs = "currentLocation" A al.rhs = f 1 A 

a2.1hs = "state,reason" A a2.rhs = f2 A e.name = "start" A e.parameters = [pi] A s e st'.states ASü st.states A 

s.name = "restore" A sl.actions = [al,a2] A t e st'.transitions A t i st.transitions A t.from = ss A t.receive = e A 

t.receiveEvent = null A t.guard = null A t.to = s A t.actions = [] A t.sends = {} A t.sendEvents = {> A 

t.start = null A t.end = null A t.convIDs = {} A t.AgentID = null) 

c- start(statelnfo) 
 ► 

restore 
currentLocatinn=chcckLocation() 

;statc,reason>=restart(stateInfo,currcntLocation) 

Figure 51. State and Transition Added to Mobile Components by CMT3 

3.1.3.2.4 Component Mobility Transform 4 

Component Mobility Transform 4 (CMT4) adds a moveCalled state and wait state to every mobile 

component belonging to a mobile agent class. The saveCompState function in the moveCalled state saves 

the state of the component into the variable statelnfo when a move is called by that component.   The 
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function getCompName returns the name of the component that is passed to the agent when the component 

calls for a move. The wait state is used to suspend the component until it receives either a terminate 

message which means that the move request was accepted or a move denied message. Figure 52 shows the 

moveCalled and wait states that are added to a mobile component by CMT4. 

CMT4 

V ag : Agent, c : Component, st: StateTable • 
(c  e  ag.components A c.name * "AgentComponent" A st = c.stateTable A isMobility_Specified(ag) A 
isMobility_Specified_Component(c)) 
=> 
(3 si, s2 : State, al, a2 : Action, fl, f2 : FunctionCall • 
f 1 .name = "saveCompState" A f 1 .parameters = [] A f2.name = "getCompName" A f2.parameters = [] A 

al.lhs = "statelnfo" A al.rhs = fl Aa2.1hs = "comp" A a2.rhs = f2 A si e st'.states A si i st.states A 

s 1 .name = "moveCalled" A s 1 .actions = [a 1 ,a2] A s2 € st' .states A s2 g st.states A s2.name = "wait" A 
s2.actions = []) 

moveCalled 
statcInlb=saveContpStateO 

comp=getCompNan»eO 

wait 

Figure 52. States Added by CMT4for Mobile Components 

3.1.3.2.5 Component Mobility Transform 5 

Component Mobility Transform 5 (CMT5) adds the transitions that link the states created in 

CMT4 and the end state to every mobile component belonging to a mobile agent class. The reqMove 

internal message contains the destination address, the component name and statelnfo of the component and 

is sent to the agent component when a move is needed by a component. Once the move has been requested 

the component waits for a confirmation or denial message. The moveDenied message is the denial 

message while the terminate message is the confirmation message. Figure 53 shows the reqMove, 

moveDenied and terminate messages that are added to a mobile component by CMT5. 
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CMT5 

V ag : Agent, c : Component, st: StateTable, mcs, ws, es: State • 
(c e ag.components A c.name * "AgentComponent" A st = c.stateTable A mcs e st.states A 

mcs.name = "StartState" A WS  e st.states A ws.name = "wait" A es e st.states A es.name = "end" A 

isMobility_Specified(ag) A isMobility_Specified_Component(c)) 
=> 
(3 tl, t2, t3 : Transition, el, e2, e3, e4 : Event, pi, p2, p3, p4: Parameter • 
pi .name = "dest" A p2.name = "comp" A p3.name = "statelnfo" A p4.name = "reason" A el .name = "reqMove" A 

e 1 .parameters = [pl,p2,p3] A e2.name = "moveDenied" A e2.parameters = [p4] A e3.name = "sorry" A 

e3.parameters = [p4] A e4.name = "terminate" A e4.parameters = [p2] A tl e st'.transitions A tl g st.transitions A 

tl.from = mcs A tl.receive = null A tl.receiveEvent = null A tl.guard = null A tl.to = ws A tl.actions = [] A 

tl.sends = {el} A tl.sendEvents = {} A tl.start = null A tl.end = null A tl.convIDs = {} A tl.AgentID = null A 

t2 e st'.transitions A t2 g st.transitions A t2.from = ws A t2.receive = e2 A t2.receiveEvent = null A 

t2.guard = null A t2.to = es A t2.actions = [] A t2.sends = {e3 } A t2.sendEvents = {} A t2.start = null A 

t2.end = true A t2.ConvIDs = {} A t2.AgentID = null A t3 e st'.transitions A t3 g st.transitions A t3.from = ws A 

t3.receive = e4 A t3.receiveEvent = null A t3.guard = null A t3.to = es A t3.actions = [] A t3.sends = {e4} A 

t3.sendEvents = {} A t3.start = null A t3.end = true A t3.ConvIDs = {} A t3.AgentID = null) 

moveCalled 
stateInfo=saveCompState() 

comp=getCompName() 4 
moveDenied(reason) 

AreqMove(dest.comp,statelnfo) terminate(conip)   ^ 

Figure 53. Transitions Added to Mobile Components by CMT5 

3.1.3.2.6 Component Mobility Transform 6 

Component Mobility Transform 6 (CMT6) modifies the From state and guard condition for all 

transitions that have a From state that is a state containing a move activity in a mobile component. The 

From state is changed to the restore state that was created by CMT3 and the guard condition is changed to a 

concatenation of the string "state==" and the name of the To state. Figure 54 shows the transitions before 

and the transitions after modification by CMT6. 

CMT6 

V ag: Agent, c : Component, st: StateTable, rs, s : State • 
(c e ag.components A c.name *■ "AgentComponent" A st = c.stateTable A rs e st.states A rs.name = "restore" A 

s e st.states A isMobility_Specified_State(s) Ate st.transitions A t.from = s A isMobility_Specified(ag) A 

isMobility_Specified_Component(c)) 
=> 
(t'.to = rs A t'.guard = "state—"+(t.to).name) 
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restore 
currentLocation=checkLocation() 

<state.reason>=restart(stateInfo,currentLocation} 

f                                                      > 
stateN fmovedl 

f                                   \ 
stateM 
activity <moved,reason>=move(dest) 

[NOT moved] 

restore 
currentLocation=checkLocation() 

<state.reason>=restart(stateInfo,currentLocation} 

|state==stateM| 

stateN 
<moved,reason>=move(dest) 

stateM 
activity 

[stote==en<l) 
-*► 

Figure 54. Transitions Altered in Mobile Components by CMT6 

3.1.3.2.7 Component Mobility Transform 7 

Component Mobility Transform 7 (CMT7) adds a state and transition to partially handle the 

process of components, belonging to a mobile agent, receiving move required messages from the agent 

component. There are three cases for modifying the components of a mobile agent to be able to receive 

move-required messages from the agent component: 

1. If there is only one mobile component and that component is a persistent component, then 

only the non-mobile components are transformed. 

2. If there is only mobile component and that component is a transient component, then all of 

the components are transformed. 

3. If there are two or more mobile components, then all the components are transformed. 

The moveReceived state is necessary to ensure that each component of a mobile agent can respond 

to an internal moveReq message from the agent component. Finally, the ready transition is needed to 

inform the agent that the component is terminating and to pass the components' current state to the agent 

component. This state information is used to restart the component in the proper state at the new address. 
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Figure 55 shows the moveReceived state and transition that are added to components of a mobile agent 

class by CMT7. 

CMT7 

V ag : Agent, c : Component, st: StateTable, es : State • 
(c e ag.components A c.name * "AgentComponent" A st = c.StateTable A es e st.states A 

es.name = "EndState" A isMobility_Specified(ag) A (isTransientComponent(c) v 
!isMobility_Specified_Component(c) v 
((mobileComponentCount(ag) > 1) A isMobility_Specified_Component(c)))) 
=> 
(3 s : State, t: Transition, e : Event, al, a2 : Action, f 1, f2 : FunctionCall, pi, p2 : Parameter • 
p 1 .name = "statelnfo" A p2.name = "comp" A f 1 .name = "saveCompState" A f 1 .parameters = [] A 

f2.name = "getCompName" A f2.parameters = [] A al .lhs = "statelnfo" A al .rhs = f 1 A a2.1hs = "comp" A 

a2.rhs = f2 A e.name = "ready" A e.parameters = [pl,p2] A S e st'.states A S i st.states A 

s.name = "moveReceived" A s.actions = [al,a2] Ate st".transitions A t g st.transitions A t.from = s A 

t.receive = null A t.receiveEvent = null A t.guard = null A t.to = es A t.actions = [] A t.sends = {e} A 

t.sendEvents = {} A t.start = null A t.end = null A t.convIDs - {} A t.AgentID = null) 

moveReceived 
stateInfo=savcCompState() 

comp=getCompNamoO 

read v f st a tel n fo.comp) 
__; :—► 

Figure 55. State and Transition Added to a Component by CMT7 

3.1.3.2.8 Component Mobility Transform 8 

Component Mobility Transform 8 (CMT8) adds a null transition from the state containing a move 

activity to the moveCalled state that was created in CMT4. Figure 56 shows the null transition added to a 

mobile component by CMT8. 

CMT8 

V ag : Agent, c : Component, st: StateTable, mes, s : State • 
(c e ag.components A c.name * "AgentComponent" A st = c.stateTable A mes € st.states A 

mcs.name = "moveCalled" A s e st.states A isMobility_Specified_State(s)) 
=> 
(t e st'.transitions A t e st.transitions A t.from = s A t.to = mes) 

stateN 
<moved,reason>=move(dest) -► 

moveCalled 
stateInfo=saveCompState() 

comp=getCompName() 

Figure 56. Transition Added to Mobile Components by CMT8 
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3.1.3.2.9 Component Mobility Transform 9 

Component Mobility Transform 9 (CMT9) modifies the transitions originating from the start state. 

Every transition from the start state is modified to start from the restore states added in either CMT2 or 

CMT3. The guard conditions on those transitions are changed to the following string, "state==", 

concatenated with the name of the To state of the transition. Figure 57 shows a transition modified by 

CMT9. 

CMT9 

V ag : Agent, c : Component, st: StateTable, ss, rs : State • 
(c e ag.components A c.name £ "AgentComponent" A st = c.stateTable A ss e st.states A 
ss.name = "StartState" A rs   e  st.states  A rs.name  = '"restore" A  t  e  st.transitions A t.from = ss  A 
isMobility_Specified(ag) A isMobility_Specified_Component(c)) 
=> 
(t'.from = rs A t'.guard = "state=="+(t.to).name) 

start(stateInfol 
restore 

currentLocation=checkLocat ion() 
<state,reason>=restart(stateInfo,currentLocation) 

/~"N start(stateInfol 
restore 

currentLocation=checkLocation() 
<state,reason>=restart(stateInfo,currentLocation) 

do(task) do(task)[staU'==stateN j 

stateN stateN 

Figure 57. Transition Altered in Components by CMT9 

3.1.3.2.10 Component Mobility Transform 10 

Component Mobility Transform 10 (CMT10) adds transitions to handle the process of a 

component receiving a "move required" message from the agent component. Every valid state in the 

component is available to be selected by the designer for the CMT10 transform. After the designer has 

selected the states in the component where a move required message has to be received, each of those 

selected states will have a transition added from that state to the moveReceived state created in CMT7. 

Then a transition is added from the restore state to those selected states with the guard condition, "state==" 

concatenated with the name of each selected state. Figure 58 shows a transition added by CMT10. 
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CMT10 

V ag : Agent, c : Component, st: StateTable, t: Transition, s, rs, mrs : State • 
(c 6 ag.components A c.name * "AgentComponent" A st = c.StateTable ASS st.states A 

s.selected = true A rs e st.states A rs.name = "restoreState" A mrs s st.states A mrs.name = "moveReceived" A 

t e st.transitions A tfrom = rs A t.to *SA (isTransientComponent(c) v !isMobility_Specified_Component(c) v 
((mobileComponentCount(ag) > 1) A isMobility_Specified_Component(c)))) 
=> 
(3 tl, t2 : Transition, e : Event • 
e.name = "moveReq" A e.parameters = [] A tl e st'.transitions A tl i st.transitions A tl.from = s A 

tl.receive = e A tl.receiveEvent = null A tl.guard = null A tl.to = mrs A tl.actions = [] A tl.sends = {} A 

tl .sendEvents = {} A tl .start = null A tl .end = null A tl xonvIDs = {} A tl .AgentID = null A 

tl .receiveEvent = null A t2 € st'.transitions A t2 i st'.transitions A t2.from = s A t2.receive = e A 

t2.receiveEvent = null A t2.guard = "state==" + s.name A t2.to = mrs A t2.actions = [] A t2.sends = {} A 

t2.sendEvents = {} A t2.start = null A t2.end = true A t2.ConvIDs = {} A t2.AgentID = null) 

stateN moveReq moveReceived 
stateInfo=saveCompState() 

comp=getCompName() 

Figure 58. Transition Added to a Component by CMT10 

3.1.3.2.11 Component Mobility Transform 11 

Component Mobility Transform 11 (CMT11) removes all move activities within the mobile 

components of every agent class. Since the agent component has been given the responsibility of 

requesting a move from the agent platform, the move activities within the mobile components are no longer 

needed. 

CMT11 

V s: State, a : Action, f: FunctionCall • 
(isMobility_Specified_State(s) A a e s.actions A a.rhs = f A f.name = "move") 
=> 
(a £ s'.actions) 

3.2 Summary 

This chapter described the process used to incorporate mobility in the MaSE methodology. 

Formal predicate logic equations were used to present the transformations that finished the process of 

generating the generic MaSE design models from the analysis models and also generated the mobile design 

models from the generic design models. The generic design models were finished by making sure that the 

move activities remained in the components during the transformation process defined by Sparkman [18] 
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and by adding an agent component to every agent class. Transforming the generic design models into 

mobile design models was accomplished by adding mobility to the new agent component and then adding 

required mobility functionality to all components belonging to a mobile agent class. Chapter IV 

demonstrates the operation of these transformations, as well as taking generating mobile design models for 

an example system and converting those models into software code to be executed within the Carolina 

mobile agent platform. 
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IV. Demonstration 

Demonstrating the solution presented in Chapter III involved taking an example problem through 

the entire MaSE process that included mobility functionality. First, the problem was taken through the 

MaSE analysis phase, which showed that mobility was included only as activities within concurrent task 

diagrams. Second, the analysis models were transformed into design models using the transformation 

process defined by Sparkman [18] and the analysis-to-design transformations defined in Chapter III. Third, 

the generic design models were transformed into mobile design models by the design-to-design 

transformations defined in Chapter III. Finally, the mobile and non-mobile design models were translated 

into software code and the resulting program was executed within the Carolina mobile agent system. 

Section 4.1 describes the problem. This problem had to be detailed enough to allow for a mobile 

agent with two mobile components. Section 4.2 presents the MaSE analysis of the problem while Section 

4.3 presents the MaSE design that incorporates the mobility changes made to agentTool. Finally, Section 

4.4 presents the Carolina implementation with screen captures that show the actual execution of the 

software solution. 

4.1 Travel Planning System (TPS) 

People are constantly traveling either for business or leisure reasons. Much of this travel is 

through the air. Normally people use travel agencies to handle the arrangements for their trip. But with the 

explosion of the Internet, more and more people are handling their own travel arrangements. These 

arrangements can include not just airline reservations but also reservations for a hotel and rental car. 

Rather than a person having to put all these arrangements together themselves, a software system using 

mobile agents could handle this task. 

All the user would have to do is input the basic travel information for the trip. Then, a mobile 

agent could be dispatched that would make all of the required reservations automatically and report back 

the completed itinerary to the user. The mobile agent would travel to places containing the necessary 

agents to make the reservations. 
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4.2 MaSE/AgentTool Analysis 

Since analysis option 1 was chosen, the MaSE analysis for the TPS system is shown starting with 

the Refining Roles step. The role model diagram shown in Figure 59 displays all of the roles, tasks and 

protocols in the TPS system. The Userinterface role is the bridge between the user and the system. Once 

the user has input the basic flight and rental car information, the reserveFlight and reserveRentalCar roles 

attempt to make the proper reservations with the airline and rentalCarAgency roles respectively. The 

reservation or failure information is displayed to the user through the Userinterface role. 

IJagentTool 
File Knowledge Base Verify CodeOen Transformation 

Currently Selected I 

JflliSJ 

Add Role 

Add Task 

Add Protocol 

Goal Hierarchy Use Cases ' Seq Diagram Role Diagram i Agent Template Diagram i Deployment: 

reserveFlight airline 

igentToolvl.8 
Reaify 
select Sequence Diesem from 
Use Cases Panel 

select Sequence Diagsmfrooi 
Use Cases Panel 

Userinterface 

03eJFIightReservatiori> s-fJfcceptFlightReservatlonj^ 

vGatherTravellnformatiorv 

BookFJignT 

BcakRental 

reserveRentalCar rentalCarAgency 

■:.GetRentalC; arReservatioji——--"■■■-■---—^ftcceptRentalCarRi 'AcceptRentalCarResetvations • 

IB 

Figure 59. MaSE Role Model for TPS System 

Each of the tasks diagrams is presented and explained except for the GetRentalCarReservation and 

AcceptRentalCarReservations tasks. These tasks are virtually identical to the GetFlightReservation and 

AcceptFlightReservations tasks respectively, so only the GetFlightReservation and 

AcceptFlightReservations tasks will be presented. 

The GatherTravellnformation task under the Userinterface role is the catalyst for starting the 

system so it will be presented first. Figure 60 shows the GatherTravellnformation task diagram. It is a 

persistent heterogeneous task because it starts with a null transition to a beginning state and then generates 
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travel-planning requests once it receives input from the user. This input is separated into flight and rental 

car information and is sent to the reserveFlight and reserveRentalCar roles respectively. A counter is also 

started in order to determine whether all the results have been received. Reservations or failures are then 

received and the final compiled results are displayed to the user. After displaying the results the 

GatherTravellnformation task transitions back to the idle state to wait for another travel planning request 

from the user. 

File   Knowledge Base   Verify   CodeSen  Transformation 

Cureiily selects*;; 

~:MM*1] 

GaalHterarcKyiUseCases;Si!qUMiii<ini Riili-Difigidin   l<i-.kPam-l  AuuntlKmpMi; Diagram   Diipluyniiint 

[travellnfo==null] 
f'-\ 
!    fr 

«goitToolvl 8 

Swing MAMLfilt. . 
... S*ve Compltie 
Swing MAMLfil*... 
.. Save Cample« 

Swing MAMLfiJ*... 

idle 

travellnfo=gefJravellnfoO 

Lcount==Q] 

[travellnfotnull] 

updateResults 

results=compile(rentalCarRes1fiightRes) 

count=decrementCount(count) 
 ^ ' 

[count>Q) 

processFfightlnfo 

f!ightlnfo=getFlightlnfo(traveltnfo) 

rentalCarlnfo=getRentalCarlnfoftravellnfo) 

"X 

receive(bookRentalCar(failure),reserveRentalCar) 

\ 
recede (bookRenlalCarfrentalCarResJ.reserveRenlalCar)^, 

\ 
receive (bookFlight(i1ightRes),reserveFlight) waitForResults 

receive(bookFlig h1(failure), res e rveFli g ht) 

/CQunb=setCounterQAsencl(bookFlighl(flightlnfo),reserveFlight?;send(bookRentalCar(renlalCarlnfo),reseiveRentalCar) 

Figure 60. Gather Travel Information Task for TPS System 

The GetFlightReservation task, shown in Figure 61, is started by a flight information message 

received from the Userinterface agent. Along with information pertaining to reserving a flight, the flight 

information also contains a list of places containing airline agents. This list is used in the getDestination 

activity in the moveNeeded state to determine whether the agent needs to move to another place. If the 

agent is required to move, the move activity in the tryMove state is executed. Once the agent has moved 

the seat request is prepared and sent to the airline agent. Once the approved reservation has been received a 
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reservation message is sent to the Userinterface agent for display. If the airline agent cannot make the 

reservation, a failure message is received and the task transitions back to the moveNeeded state to see if the 

list of places is not empty. If the list is not empty, the reserveFlight agent attempts to move to the next 

place and make a reservation. This process continues until either a reservation has been made or the list of 

places is empty. Once the list is empty a failure message is sent to the Userinterface agent for display. 

[IfagentTooi 
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Cjrr&ify Selected 1     _______ 

wkz* *'#& 
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tgentToolvt.S 
R(«fy 
Suing MAML fil*. 
.    Sew Cconplrt* 

receive(£ookFlight(flightlrrfo),Userlnterface) 

 t  

INOTneedMove]Asend(bookF 

moveNeeded 

d e st= g etD esti n ati o n (fi i g htl nfo) 

cu rre ntLo c ati o n=c he ckLo c ati o n 0 
needMove=compare(dest,curren!Location) 

[need Move].. 
tryMove 

*moved,reason»=move(dest) 

g hlCfa il ure), U s e rl nte rfac e) 

[mo ;ed] 

prepareReservationRequest 
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/ re c e ive (re s e*rve<ta il ure), a i rl i n e) 

0- receive(reser/e(flightRes),airline)Asend(bookFlight(flighlRes),Userln1erface) waitForResult 

■ !D)x|l 

Figure 61. GetFlightReservation Task for TPS System 

The AcceptFlightReservations task is the final analysis phase task to be presented and explained 

and is shown in Figure 62. This task is a persistent reactive task that starts with a null transition into an idle 

state and remains there until a reserve message is received.  If a reservation is made, a reserve message is 

sent to the GetFlightReservation agent who forwards the reservation to the Userinterface agent.    If, 

however, a reservation is not made, a failure message is sent to the GetFlightReservation agent. 
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Figure 62. AcceptFlightReservations Task for TPS System 

This concludes the analysis of the TPS system within MaSE.   As was shown, the concept of 

mobility was included only as an activity within the tryMove state in the GetFlightReservation and 

GetRentalCarReservation task diagrams.   In the next section that covers the MaSE design phase, these 

analysis models are transformed into design models. Then, an agent component is created for each of the 

agents in the system according to the transformations defined in Section 3.2.2.2.   Finally, the agent and 

other components belonging to any mobile agent classes in the TPS are transformed to handle mobility 

according to the transformations defined in Section 3.2.3. 

4.3 MaSE/AgentTool Mobile Design 

Design of the TPS system using MaSE consisted of three steps. First, the agent classes were 

identified in the Creating Agent Classes step. Secondly, in the Construction Conversations and Assembling 

Agent Classes steps, the transformations defined by Sparkman [18] in conjunction with the analysis-to- 

design transformations defined in Chapter III, were executed on the TPS analysis models, that included the 

agent classes from the first step, to construct the components from the tasks and harvest the conversations 

from those components. Finally, the mobility transformations defined in Chapter III were executed to 

finish the Assembling Agent Classes design step. 
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4.3.1 Creating Agent Classes 

The first step was to create the agent classes for the TPS system. Figure 63 shows the agent 

classes. A Userinterface agent class was created that contains the InterfaceUser role. The reserveFlight 

and reserveRentalCar roles were combined into the PlanTravel agent class. The airline role was placed into 

the Airliner agent class and the rentalCarAgency role was placed into the CarRental agent class. 

aqentTool 
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agaitToolvl.8 
Retdy 
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U« Casts Panel 

select Sequence Diagramfium 
Use Cases Panel 

Agent deleted 

Userinterface reserveFlight 

reserveRentalCar 
CarRental 

rentalCarAgency 

S^MSMMSMZZZ. IH 

Figure 63. Agent Classes for TPS System 

4.3.2 Constructing Conversations/Assembling Agent Classes 

Next, the transformations defined by Sparkman [18], including the transformation defined in 

3.1.2.1, were executed on the analysis models and agent class definitions. Then, the mobility 

transformations defined by Chapter III were executed on the resulting analysis models. All of the 

transformations defined in Chapter III are available on the main agentTool menu bar under the 

Transformations heading. As shown in Figure 64, the analysis to design transformations defined in Section 

3.2.2 are grouped together under the menu heading of Create Agent Component, the agent component 

mobility transformations defined in Section 3.2.3.1 are grouped under the menu heading of Agent 

Component Mobility and the component mobility transformations defined in Section 3.2.3.2 are grouped 

under the menu heading of Component Mobility. 
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Figure 64. Transformation Menu in agentTool 

4.3.2.1 Create Agent Component 

After selecting the Create Agent Component option on the Transformation menu bar, the agent 

component transformations were executed, which created an agent component for every agent class in the 

system. A high level view of the agent component created for the InterfaceUser agent class that plays the 

Userinterface role is shown in Figure 65. The GatherTravellnformation, AcceptFlightReservations and 

AcceptRentalCarReservations components are all non-mobile persistent proactive components. The agent 

component diagram created for these components, as described in Section 2.2.1.1.3, is the same for all 

three agent classes and is shown in Figure 66. 
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Figure 65. Components of InterfaceUser Agent Class for TPS System 
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Figure 66. Agent Component for InterfaceUser Agent Class 

An agent component was also created for the PlanTravel agent class by the agent component 

transformations. This component is shown in Figure 67. This is a transient agent component, as described 

in Section 2.2.1.1.2, since the GetFlightReservation and GetRentalCarReservation components are transient 

reactive components. Also, there is no transition from the start state. Since the PlanTravel agent class has 
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mobility specified in its components, the agent component will be transformed by the agent component 

mobility transformations, which will add a transition from the start state to idle state. 
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Figure 67. Agent Component for Plan Travel Agent Class 

This concludes the changes to the analysis models by the agent component transformations. Next, 

mobility is added to the agent components of all mobile agent classes in the system by the agent component 

mobility transformations. 

4.3.2.2 Agent Component Mobility 

In the TPS system, only the PianTravei agent class is mobile.    After selecting the Agent 

Component   Mobility   option   on   the   Transformation   menu   bar,   the   agent   component   mobility 
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transformations were executed to add mobility functionality to the agent component of the PlanTravel 

agent class. The resulting agent component diagram, as described in Section 3.2.3.1.5, is shown in Figure 

68. 
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Figure 68. Agent Component for PlanTravel Agent Class in TPS System After Agent Component Mobility 
Transformations 

This concludes the changes made to the agent components by the agent component mobility 

transformations. Finally, mobility is added to the non-agent components of all mobile agent classes in the 

system by the component mobility transformations. 

4.3.2.3 Component Mobility 

In the TPS system only the GetFlightReservation and GetRentalCarReservation components have 

mobility specified.   After selecting the Component Mobility option on the Transformation menu bar, 
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mobility functionality was added to these two components by the component mobility transformations. 

Before showing the resulting GetFlightReservation component, Figure 69 shows the GetFlightReservation 

component after the transformations defined in [18] were executed. Notice that the move activity and state 

containing that activity have not been changed whatsoever. Only the agent component has been created 

based upon the type of the components contained within the agent class. The GetRentalCarReservation 

component will not be shown because it is essentially the same as the GetFlightReservation component. 
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Figure 69. GetFlightReservation Component after Transformations Defined by [18] 

The agent component and agent component mobility transformations require no input from the 

designer of the system. But during the component mobility transformations, the designer could be asked to 

select states that can receive a move-required message. The rules governing whether the designer will be 

asked were presented in Section 3.2.3.2.7. The dialog box shown in Figure 70 informs the designer of the 

need to select states for a given component. 
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Figure 70. Informational Dialog before Selecting States to Receive Move Required Messages 

Once the designer has pressed the "OK" button on the dialog box the state selection dialog box is 

shown with the states that are allowed to receive a move-required message.   The designer must select at 

least   one   state.      Figure   71   shows   the   state   selection   window   for   selecting   states   for   the 

GetFlightReservation component.   For demonstration purposes, the prepareReservationRequest state was 

chosen to receive a move-required message.    Figure 72 shows the completed GetFlightReservation 

component after all the component mobility transformations have been executed. 

This concludes the analysis of the TPS system using the MaSE methodology that incorporated 

mobility. In the next section, this design is transformed into software code that executed within the 

Carolina mobile agent platform. 
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4.4 Carolina Implementation 

For the Carolina implementation, the mobile design models generated by the transformations 

defined in Chapter III for the TPS system were converted into software code. The agent component for 

each agent class in the system was an extension of the Carolina base agent class. A special component 

class was created for the other components in an agent class. The conversations, however, were generated 

automatically by agentTool but required slight modifications to correct errors in the code generation 

process. 

On startup of the TPS system, the InterfaceUser and PlanTravel agents are started, on a Carolina 

agent platform, at the same address. The GatherTravellnformation component belonging to the 

InterfaceUser agent is also started on the same address as the InterfaceUser agent. The Airline and 

CarRental agents are started on Carolina agent platforms throughout the network. All of these agents 

transition to their respective idle states upon creation and wait for a travel request to plan. 

The InterfaceUser agent incorporated a graphical user interface (GUI) in order to get the necessary 

requirements for travel from the user. Figure 73 shows the GUI for the TPS system. The user inputs the 

start city, end city, start time, end time, day of travel, airline choices and rental car agency choices and then 

clicks the Plan Itinerary button to start the planning. 

Once the button has been pressed the InterfaceUser agent sends the travel information to the 

PlanTravel agent. The PlanTravel agent starts the GetFlightReservation and GetRentalCarReservation 

components based on the information received from the InterfaceUser agent. These components, based on 

the information received, starts the planning processes. 
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Figure 73. Travel Planner Graphical User Interface for TPS System 

In this example, the Airline and CarRental agents are located on different addresses.  So, the first 

component to decide to move (either GetFlightReservation or GetRentalCarReservation) sends that move 

request to the PlanTravel agent. The PlanTravel agent automatically accepts the move request, informs the 

requesting component to terminate and informs the other component to save state and terminate. 

The output on the user's machine is shown in Figure 74. In this case, the 

GetRentalCarReservation component requested a move first so the PlanTravel agent is moving to the 

network address specified by that component. The PlanTravel agent ignores the move request by the 

GetFlightReservation component since the PlanTravel agent received the message after the move request 

message sent by the GetRentalCarReservation component. Both components terminate gracefully and the 

PlanTravel agent moves to the location specified. 
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Figure 74. TPS System Output Showing Agents Starting the Travel Planning Process 

Figure 75 shows the output of the PlanTravel agent at the first address. The CarRental agent and 

the AcceptRentalCarReservations component were already running at this address before the PlanTravel 

agent   arrived.       Upon   arrival,   the   PlanTravel   agent   restarted   the   GetFlightReservation   and 

GetRentalCarReservation components with the state information for each component that was saved at the 

previous address. The GetRentalCarReservation component determines that the agent did indeed move to 

the     location     it     specified,     so     it    begins     the     bookRentalCar     conversation     with     the 

AcceptRentalCarReservations component.    The AcceptRentalCarReservations component receives the 

rental car information from the GetRentalCarReservation component and begins to make a reservation. On 

the other hand, the GetFlightReservation component determines that it is still not at an address where a 

Airline agent is located so it sends a message to the PlanTravel agent with a new destination.   The 

PlanTravel agent receives the message, automatically approves the move, sends a terminate message to the 
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GetFlightReservation component and sends a move required message to the GetRentalCarReservation 

component. Both components shutdown and the PlanTravel agent attempts to move to the location 

specified by the GetFlightReservation component. The GetRentalCarReservation component does not have 

to tell the AcceptRentalCarReservations component where the agent is moving to because the Carolina 

agent platform keeps track of where agents move and forwards the messages to the new address. The 

PlanTravel agent moves before the AcceptRentalCarReservations component has sent the reservation to the 

GetRentalCarReservation component. 
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Figure 75. PlanTravel Agent at First Address 

Figure 76 shows the output of the TPS system at the second and final address.   The Airline agent 

and the AcceptFlightReservations component were already running at this address before the PlanTravel 

agent   arrived.       Upon   arrival,   the   PlanTravel   agent   restarted   the   GetFlightReservation   and 

GetRentalCarReservation components with the state information for each component that was saved at the 
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previous address. The GetFlightReservation component determines that the agent did indeed move to the 

location it specified, so it begins the bookFlight conversation with the AcceptFlightReservations 

component. The AcceptFlightReservations component receives the flight information from the 

GetFlightReservation component and begins to make a reservation. The GetRentalCarReservation 

component determines that it has moved to a new address and that it was waiting for the reservation from 

the AcceptRentalCarReservations component so it enters a wait for results state. The rental car reservation 

message arrives and the GetRentalCarReservation component forwards the result to the 

GatherTravellnformation component on the users machine. It then terminates because it has fulfilled its 

goals. The    GetFlightReservation    component    receives    the    flight    reservation    from    the 

AcceptFlightReservations component and forwards the result to the GatherTravellnformation component 

on the users machine. The GetFlightReservation component also terminates because its goals have been 

fulfilled as well. However, the PlanTravel remains alive because it is a reactive agent. 
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Figure 76. PlanTravel Agent at Second and Final Address 
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Figure 77 shows the final results from the TPS system. The GatherTravellnformation component 

collected the result messages from the GetFlightReservation and GetRentalCarReservation components and 

displayed them to the user. 
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Figure 77. Final Results from TPS System 

4.5 Summary 

This chapter demonstrated that the solution presented in Chapter III, to the problem described in 

Chapter I, was feasible. An example system was analyzed and designed using the MaSE methodology with 

the additional functionality defined in Chapters II and III. Once the mobile design models were created in 

MaSE by the semi-automated transformations, the models were converted into software code for execution 

on the Carolina mobile agent platform. Only the software code for the conversations was automatically 

generated by agentTool for the Carolina environment. The travel planning system (TPS) was executed in 

the Carolina environment successfully, thus demonstrating the feasibility of the solution presented in this 

thesis. Chapter V summarizes the conclusions from previous chapters and also discusses future research 

for extending the work begun in this thesis. 
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V. Conclusions and Future Work 

Incorporating mobility into the MaSE methodology turned out to be more intensive than was 

originally thought, especially the many enhancements that were required in the design phase of the 

methodology in order to support mobility. This chapter summarizes the research that was accomplished 

through this thesis effort and describes future research that could augment or broaden this research. 

5.1 Conclusions 

Additions to the MaSE methodology as described in previous chapters did indeed satisfy the end 

goal of this research. Analyzing a variety of options for incorporating mobility into the analysis and design 

phases of MaSE provided great insight into the requirements for agent mobility even though only one 

option was selected for each phase. Once the requirements were incorporated into the methodology, 

defining the analysis-to-design and design-to-design transformations was relatively straightforward. 

Mobility was added to the MaSE analysis phase with minimal impact. Only the addition of a 

second predefined move activity was required in the Refining Roles step. 

Before mobility could be specified in the design phase, an agent component was required in the 

new MaSE agent architecture to incorporate the behavior of the components that compose an agent class. 

The agent component controls the creation all components and handles the initial messages to start 

conversations or transient components within agent classes. It also ensures the continuous operation of a 

reactive agent, while also providing fault tolerance in case of persistent component failures. 

Transformations were defined to build an agent component for each agent class in the Assembling Agent 

Classes design step. These transformations build upon the analysis-to-design model transformations 

defined by Sparkman [18] and are considered part of that process. 

Mobility was specified within all components in a mobile agent class. The agent component 

handles most of the moving responsibilities for the agent while the mobile components are responsible for 

determining the destination for agent movement.  Non-mobile components are required to receive move- 
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required messages, save their current execution state and terminate. Automated transformations, for the 

most part, converted the generic design models into mobile design models, which included the agent 

component. 

The mobile design models were then converted to Carolina agent platform software code but those 

models could have been converted into software code for any of the mobile agent platforms discussed in 

the background section of Chapter I or the mobile agent platforms section of Appendix A. The execution 

of the code within Carolina demonstrated the feasibility of this research. 

Adding mobility to an agent-oriented software engineering methodology increases the power of 

that methodology to solve problems. This research provides software system designers that use MaSE an 

invaluable capability for analyzing and designing multiagent systems that take advantage of mobility. 

Also, the almost fully automated transformation process defined in this thesis allows for the addition of the 

basic underlying functionality for mobility, while also allowing for increased specification of the decision 

process to move, to a multiagent system with almost minimal effort. 

5.2 Future Research 

There are many possible ways for expanding and verifying the work done in this thesis but the 

following discussion will be limited to four different areas. Incorporating the other two dynamic agent 

properties namely cloning and instantiation, is the main area for expanding this thesis. Another area would 

be to create transformations that add security to the design models. A third area would be to define formal 

proofs of the transformations contained within this thesis to verify the validity and correctness of the 

transformations. And a final area, software code for the mobile design models (existing conversation code 

generation only needs to be modified) can be automatically generated. 

5.2.1 Specifying Cloning and Instantiation 

Cloning and instantiation add to the power of a dynamic agent system. Mobility is just a special 

case of cloning.   Full cloning capability would bring the advantages of parallel computing and optimal 
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distribution of tasks to a multiagent system in order to solve performance bottlenecks. The decision to 

clone should probably be the responsibility of the components, as is the case with mobility, with the agent 

component carrying out the details. 

Instantiation of other agents that have the capabilities to perform certain tasks ensures that agents 

within multiagent systems can fulfill all of their goals through agent collaboration. Instantiation might 

differ from mobility in the respect that the agent component could have the both the responsibility to decide 

on instantiating another agent and the responsibility for starting the process of instantiation. 

5.2.2 Adding Security to Design Model 

Security is a major concern in the area of computing with multiagent systems and mobile agents 

being no exception. Defining transformations that add security to a generic design model that may or may 

not contain mobility would be an important addition to the overall MaSE methodology. Since the 

capability to design a system containing mobile agents has been added to MaSE and there are more security 

concerns with using mobile agents than a multiagent system in general, the need for designing security into 

the MaSE design models has greatly increased. 

5.2.3 Formal Proof of Transformations 

Even though examples were used in this thesis to show that the transformations worked as 

designed, they do not cover every possible consideration. Formal proofs are required to make sure that the 

transformations are correct. In order to formally define the transformations, semantics of the MaSE models 

used within [18] would have to be formally specified. 

5.2.4 Automatic Code Generation 

Generating code automatically, that executes as designed, has been the goal of much research in 

the field of computer science. agentTool has automatic code generation for the conversations between 

agents using the Carolina agent platform (used in the demonstration system in Chapter IV), so modifying 
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and extending that to include the code for the components and code for other mobile agent systems would 

be a straightforward attainable goal. 

5.3 Summary 

Mobile agent technology is a relatively new and exciting field in the area of artificial intelligence 

and software engineering. This thesis starts to bridge the gap between agent-oriented software engineering 

methodologies and mobile agent systems. Merging these two areas provides more power to solve the 

complex problems facing the Air Force and Department of Defense in this new era of increasing mobile, 

distributed computing. 
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A. Background 

In order to solve the problem of integrating dynamic agent concepts into a multiagent design 

methodology a good understanding of dynamic agents, multiagent systems, Agent-Oriented Software 

Engineering (AOSE) methodologies and Agent Platforms (AP) that support dynamic agent operation is 

required. Section A. 1 is devoted to discussing dynamic agents while the advantages for using these 

specialized agents is covered in Section A.2. Next, current AOSE methodologies are described in Section 

A.3 and finally, an overview of the properties and capabilities of Mobile Agent Platforms (AP) is covered 

in Section A.4. 

A.l Dynamic Agents 

Building high quality software for real world applications is one of the most difficult construction 

tasks facing humans today [8]. It is the number and complexity of real world components and the 

relationships between those components that makes modeling the real world so difficult. Real world 

problems are also distributed, dynamic and heterogeneous. Many different software engineering 

approaches have been tried to tackle the task of modeling complex, distributed systems including object- 

oriented methodologies. 

This methodology models the real world by using an abstraction called an object. Objects 

represent real world entities such as cars, airplanes or rooms. They encapsulate attributes of those objects 

such as size, weight, dimensions, location, capacity and speed limits. Objects also encapsulate methods 

that can access or change attributes describing that object. These methods can also perform some action on 

an object. Some method examples are: set_location(3,4), get_location(), get_speed(), 

set_speed(21),   fly(),   land(),   etc. 

Interactions between objects consist of one object calling a method from another object. These 

interactions are precisely defined during the design phase and are static for the life of the system. This 

means that no object will call a method from another object if that call was not modeled in the original 

design of the system.   Also, the objects are placed into a structured hierarchy or organization during the 
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design phase as well.   This organization is again static and will never change during the lifetime of the 

system. 

It is precisely these two aspects of 00 that are inadequate for developing complex distributed 

systems [8]: 

(i) Interactions between computational entities are all defined a priori and do not change 

during execution of the system 

(ii) Organizational structures are defined a priori and do not change during execution of the 

system 

Interactions between entities may need to occur that were never planned and different organizational 

structures are needed at different times to ensure that system goals are accomplished. With the explosion 

of the Internet and client-server architecture, distributed computing environments have begun to dominate 

the computer world. Approaches to developing applications to operate in these environments are critically 

needed. 

Researchers in the discipline of artificial intelligence have started to develop approaches to solve 

problems in these complex, distributed environments. Current and past work in artificial intelligence has 

been focused mainly on developing software systems that appear intelligent to humans using agents. An 

agent is a software system that displays the following traits or properties [24]: 

• Autonomous - not controlled directly by humans or other agents 

• Cooperative - agents communicate amongst themselves to help achieve goals 

• Perceptive - agents perceive, react and can make changes to their environment. 

• Pro-active - agents are not passive entities like objects.   They exhibit goal-directed 

behavior. 

Past work in artificial intelligence consisted mainly of a single agent [19]. A single agents' 

capacity to solve problems is limited by its knowledge, perspective and computing resources. Real world 

problems are generally too large, complex and unpredictable to be handled by a single agent. Some AI 

researchers have realized the limitations of a single agent and have focused work on multiagent systems. 
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These systems can be executed on one machine or can be distributed across multiple networked machines. 

Distributed multiagent systems bring the power of modularity in the form of flexible agent-based 

organizations to handle the complexity and size of real world problems. Multiagent systems can also 

provide efficient solutions to real world problems where resources or expertise is distributed. 

The agents that make up these systems can be either static or dynamic. Dynamic agents are agents 

that possess the following properties: 

• Cloning - the ability of an agent to create another instance of itself 

• Instantiation - the ability of an agent to create instances of another type or class of agent 

other than itself 

• Mobility - the ability of an agent to move from machine to machine in a network 

These three agent properties, or traits, have been the focus of new research in the DAI arena with the 

property of mobility receiving the most attention. 

Two specifications for these properties are found in current literature [6] [17]. In the Foundation 

for Intelligent Physical Agents (FIPA) specification, cloning, instantiation and mobility are all grouped 

under mobility. Simple and full protocols have been defined for each property. An agent using a simple 

protocol relies on the agent platforms involved to perform most of the work while an agent using a full 

protocol will split the work between itself and the agent platforms. Shehory and others agree with the FIPA 

specifications but consider mobility to be a special instance of cloning and so group mobility under cloning. 

Their definition of mobility however, follows the FIPA simple mobility protocol exactly. Figure 78 shows 

the FIPA simple mobility protocol. 

In this protocol an agent sends a request to move to the agent platform on which it is currently 

executing. The home platform terminates the agent and sends it to the destination platform. Finally, the 

agent is restarted on the destination platform. The agent by using this protocol is in effect delegating the 

mobility operation to the agent platform. 
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2. terminate (A) 
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Figure 78. FIPA Simple Mobility Protocol [6] 

A.2 Dynamic Agent Advantages 

Dynamic agent systems have shown promise in being able to solve certain network related 

problems such as finding services and information on the World Wide Web (WWW). These systems have 

shown an advantage over other client-server interaction solutions, such as remote procedure calls (RPC), 

messaging and sockets, in terms of different application and network factors. Four advantages, if done 

properly, for using dynamic agents are [2][7][11]: 

1) They can reduce communication and bandwidth costs 

2) They can be hardware and operating system independent depending on the 

mobile agent platform they execute on 

3) They can be fault tolerant 

4) They can maintain optimal configuration 

First, dynamic agents have an advantage in networks where communication costs increase as 

bandwidth decreases. Examples of this type of network include Internet connections using cellular phone 

networks and satellite-based networks. Current network communications rely heavily on RPC, which is a 

synchronous protocol. RPC is the protocol used when one network machine calls a procedure on another 

machine. The calling machine sends data over to the receiving machine and then waits for a response 

before sending any more data. All the messages passed in the network are either a request for service or an 
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acknowledgment for a received message. This approach requires a continuous connection between two 

machines, an established protocol for the message exchanges and multiple interactions in order to complete 

a task. Thus, a great deal of network bandwidth can be tied up because of the need for this type of 

connection and frequency of communication. Dynamic agents avoid this communications overhead by 

being able to migrate to another machine and perform data gathering on that machine. Once the data has 

been processed then the agent travels back to the original machine. Communication traffic in this case was 

reduced to just two agent moves and bandwidth was saved because only relevant information was sent 

across the network. 

Second, current distributed systems including the Internet are not only heterogeneous in terms of 

the hardware that they run on but also the software that defines them. Since most dynamic agent platforms 

are written in Java or some other device independent software language they are a natural fit for widely 

dispersed heterogeneous execution environments. Most platforms rely only on their particular execution 

environment. Because of this independence these dynamic agent platforms are computer, and transport- 

layer independent. 

Third, system crashing, loss of network connectivity and periodic reboots are just some of the 

problems that occur regularly in networks. Dynamic agents and systems are able to perceive changes to 

their environment and then have the functionality take an appropriate action. In the case of a system crash 

most dynamic agent systems have persistent storage of agents so that recovery of those agents is 

straightforward. If the network is down either the agent or system will keep trying to migrate until the 

connection is restored. Finally, if a machine needs to be rebooted, the agents would be notified by the 

agent system. The agents then have the option to either migrate to other available machines in the network 

or be stored until the machine is operating again. 

Fourth, processor or agent overloading can occur in a multiagent system. When processor 

overloading occurs, dynamic agents can migrate to a machine in the network where the processor is not 

overloaded. And in the case of multiple dynamic agents, this functionality allows them to distribute 

themselves around a network in an optimal configuration in order to complete tasks.  In the case of agent 
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overloading the dynamic agent either makes a clone to perform some of the tasks or, if the dynamic agent 

does not have the capability to perform, it can instantiate an agent that can perform those tasks. 

A.2.1 Summary 

Agents are a natural abstraction of objects from the object-oriented methodology. The properties 

of dynamic agents (mobility, cloning and instantiation) can be thought of as extensions to the general 

definition of an agent. As shown above, dynamic agents posses tremendous network functionality and 

could replace current network protocols such as RPC and messaging. In fact, if all the functionality 

provided by a dynamic agent system is taken together, there is no single alternative that can provide that 

same level of functionality [2]. However, there are three main reasons why dynamic agent technology has 

not replaced those protocols. The first deals with the lack of even one network function that can only be 

accomplished by using dynamic agents. Everything that a dynamic agent system can do can be done using 

other network protocols [2]. The second reason is that RPC and messaging have been in use for many 

years and are successful. And finally, dynamic agent technology is still in its infancy. Many issues still 

need to be worked out including security, standards, and interoperability. There are many dynamic agent 

systems (mostly focusing on the mobility aspect) already in industry but there is no interoperability to date. 

FIPA and the Object Modeling Group have begun to develop standards but they have not been widely 

accepted. 

A.3 Agent-Oriented Software Engineering (AOSE) Methodologies 

AOSE differs from object-oriented in terms of the agent-oriented abstractions used to model a 

system. These abstractions include agent-oriented decomposition, characterizing complex systems by 

subsystems, interactions, and organizational relationships to include building in mechanisms for agents to 

flexibly form, maintain, and disband these organizations. Some of the current AOSE methodologies 

include Agent-Oriented Analysis and Design (GAIA) [25], Multi Agent Scenario-Based (MASB) [13] and 

Multiagent Systems Engineering (MaSE) [23]. Each of these methodologies is discussed further in the 

following sections. 
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A.3.1 Agent-Oriented Analysis and Design (GAIA) 

The GAIA methodology [25] is based on the view of a system as a computational organization 

consisting of various interacting roles. It has an analysis phase that is comprised of a roles model and an 

interaction model. GAIA also has a design phase that is comprised of an agent Model, a services model 

and an acquaintance model. The main models of the GAIA methodology are shown in Figure 79. The 

arrows represent the input to each model. 

requirements 
statement 

roles model 
interactions 

model 

agent model services model 
acquaintance 

model 

analysis 

design 

Figure 79. The GAIA Methodology [25] 

The roles model schema identifies the key roles in the system where a role is an abstract definition 

of  an   agent's  expected   function.     Each   role  has   three   types   of  attributes:   Permissions/Rights, 

Responsibilities and Protocols. Permissions are used to identify resources (information or knowledge that 

an agent has) and the limits to which those resources can be used to carry out a role.   Responsibilities 

define the functionality of a role. In GAIA there are two categories of responsibilities: liveness and safety. 

Liveness responsibilities imply that something will be done and refer to the actions that define a role. 

Safety responsibilities ensure that undesirable conditions do not arise as the liveness responsibilities are 

carried out.   Finally, protocols are formally defined patterns of interactions that occur in the system 

between the various roles.   These protocols are represented in the interaction model.   An example roles 

model schema for a CoffeeFiller role is shown in Figure 80 while the Fill Protocol Definition for the 

interaction model between the CoffeeFiller and CoffeeMachine roles is shown in Figure 81. 
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ROLE SCHEMA: CoffeeFiiler 

DESCRIPTION: 

PROTOCOLS: 

PERMISSIONS: 

This role involves ensuring the coffee is kept filled and 
informing the workers when fresh coffee has been brewed. 

Fill, InformWorkers, CheckStock, AwaitEmpty 

reads       supplied coffeeMaker //name of coffee maker 
coffeeStatus //full or empty 

changes  coffeeStock //slock level of coffee 

RESPONSIBILITIES 

LIVELINESS: 

SAFETY: 
CoffeeFiiler = (Fill. Inform Workers.CheckStock.AwaitEmpty)" 

• coffeeStock > 0 

Figure 80. Example Roles Model Schema [25] 

Supplied coffeeMaker 

Fill 

CoffeeFiiler     CoffeeMachine 

Fill coffee machine 
coffeeStock 

Figure 81. Fill Protocol Definition [25] 

The design phase of GAIA is concerned with transforming the analysis model into a sufficiently 

low level of abstraction so that traditional design techniques (including object-oriented) may be applied. 

Three models are generated in the design phase as shown in Figure 79. The purpose of the agent model is 

to identify the different agent types in the system and the agent instances that will represent the agent types 

at run-time.   The services model identifies the services and main properties of those services that are 

associated with each agent role.   Services are single, coherent blocks of activity (functions) that agents 

perform. 

A.3.2 Multi Agent Scenario-Based (MASB) 

Another analysis and design method for the development of multiagent systems is MASB [13]. 

MASB views multiagent systems as systems composed of software agents (SA's) playing one or more 

different roles in predetermined scenarios (much like protocols in GAIA). The analysis phase consists of 

the following 5 steps: Scenario description, Role functional description, Conceptual data modeling, Static 

and dynamic descriptions of the world and System-user interaction modeling. The design phase consists of 
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the following 5 steps: MAS architecture and scenario characterization, Object modeling, Agent modeling, 

Conversation modeling, and System design overall validation. 

Several modeling techniques with user collaboration are used in the analysis phase of MASB to 

describe scenarios, agent's roles and their main knowledge structures. A scenario (or script) is a narrative, 

a graphical or a visual description of what people do when they perform tasks. Each scenario is specified 

as a set of roles that are played by agents involved in that scenario. Behavioral diagrams [14] are then used 

to precisely describe the scenarios. These diagrams outline the scenario in terms of agent roles and 

activities, local information or knowledge stores and their contributions to activities, and interactions with 

other agents playing specific roles. Then, the local information or knowledge stores described in the 

behavior diagrams are analyzed further in terms of attributes. A conceptual data structure is then created 

that features the main elements that will be included in the SA's local database. However, the conceptual 

data structure only specifies the static properties of an agent's fact base so object life-cycle diagrams [12] 

are used to reflect the changes that could occur in the attributes. Next, the world in which the agents act is 

described. This step consists mainly of identifying and structuring artifacts that the SA's create or 

manipulate. Finally, the interactions that take place between the users and the SAs are modeled using 

forms generated by hand or computer. 

The objective of the design phase of MASB is to transform all the models from the analysis into 

formal specifications that are used as inputs to the SMAUL tool, which generates the actual code for the 

agents. First, scenarios from the first analysis step, the roles that make up those scenarios and which SAs 

will support those roles are identified. Behavior diagrams from the second analysis step are also used to 

assign the appropriate behaviors to the roles that were selected above. Second, structures (class hierarchies, 

attributes, procedural attachments, etc.) and behaviors of objects are specified from the models obtained 

during the fourth analysis step. Third, designers formally specify the knowledge structures characterizing 

SAs to include: beliefs, decision space, action space and reasoning space. Belief structures for agents are 

derived from the data conceptual structure created during the third analysis step. A decision space and 

action space are then created for each role that an agent can play using the scenario descriptions from the 

analysis phase as a starting point. Fourth, conversations are modeled and most of the code for the MAS is 
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generated. Finally, the system is validated by manually triggering the behaviors of the various SAs in the 

system. 

Ä.3.3 Multiagent Systems Engineering (MaSE) 

The Air Force Institute of Technology (AFIT) Agent Research Group has been focused on 

developing and maturing an AOSE methodology. The MaSE methodology [23] has been designed to cover 

the entire life cycle of developing and implementing a multiagent system. An overview of MaSE is shown 

in Figure 82, with the two phases, analysis and design, shown on the right hand side next to the seven steps. 

The boxes represent the different models used in those steps. 

Deployment 
Diagrams System Design 

Figure 82. The MaSE Methodology [23] 

A major difference between 00 and MaSE analysis deals with how the problem is initially broken 

down. In the 00 approach, the analyst evaluates an initial system specification or context in terms of the 

separate "objects" that exist within the system and creates an object diagram showing those objects. 
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However, in step 1 of the MaSE methodology, the overall goals of the system are identified from the 

specification and are structured into a goal hierarchy diagram as shown in Figure 83. Goals are used 

instead of identifying functions of the system because the goals are more stable and less likely to change 

during the development cycle. 

1.1.1   Determine if 
files have been 

deleted or modified. 

1.1  Detect & notify 
admin of system file 

violations. 

1.1.2 Detect user 
attempts to modify 

files. 

1. Detect and notify 
administrator of 
host violations. 

1.1.3 Notify 
administrator of 

violations. 

1.2 Detect and 
notify administrator 
of login violations. 

1.2.1 Determine if 
invalid user tries to 
 login  

1.1.3a/1.1.2a 
Ensure the admin 

receives notification. 

1.2.2 Notify 
administrator of 
login violations 

Figure 83. Goal Hierarchy Diagram [5] 

Step 2 of MaSE then deals with creating use cases that help identify possible roles that will exist 

in the system and also outline initial communication paths between those roles.   A role is an abstract 

description of an expected function that agents in the system will be required to perform and is made up of 

system goals that the role is expected to satisfy [5]. Roles can be thought of as particular positions within a 

company structure such as the President or Chief Information Officer.   And like those positions in the 

company, an agent playing that role has certain responsibilities or goals. 

Roles are partly defined by the sequence diagrams that are taken from use cases gathered either 

from the initial system context or from user stories. Use cases are sequences of events that define system 

behavior. There are two types of use cases needed to properly describe system behavior. A sequence of 

events between one or more roles is what defines a sequence diagram. Events correspond to the 

information passing between the individual roles in the use cases. One sequence diagram generally 

corresponds to one use case. An example of a MaSE sequence diagram is shown in Figure 84. 
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FileViolation 

Reported 
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NotificationComplete 

Notify 

Acknowledge 

Figure 84. Sequence Diagram [5] 

Once the goals have been captured and the system behavior has been modeled by use cases and 

sequence diagrams, the last analysis step in MaSE, Transforming Goals to Roles, can be accomplished. In 

this step the structured goals and sequence diagrams are transformed into roles and their associated tasks. 

Roles and tasks are the basic building blocks for developing multiagent systems. Every system goal will be 

accomplished if the goals are associated with roles and an agent class plays each role. There is generally a 

one-to-one mapping of goals to roles but in some cases goals are combined and placed into a single role. 

An example of a mapping of goals to roles in MaSE is shown in Figure 85. 

FileNotifier 
1.1 

LoqinNotifier 
1.2 

FileDeletion Detector 
1.1.1 

FileModifiedDetector 
1.1.2 

AdminNotifier 
1.1.3,1.1.3a 
1.1.2,1.2.2a 

LoqinDetector 
1.2.1 

Figure 85. Goals Mapped to Roles [5] 
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Roles must exhibit certain behaviors in order to accomplish the goals that have been associated 

with them. These behaviors are modeled using concurrent tasks where each role may have many 

concurrent tasks that define its behavior. Sequence diagrams from step 2 of the methodology, Applying 

Use Cases, can be used to help initially define the tasks. Concurrent tasks are tasks that operate in their 

own thread of control and are graphically specified using Concurrent Task Diagrams that are built using 

finite state automata [4]. Actions in the states of those diagrams contain the functionality that the role is to 

perform. A transition between the states represents either internal coordination of tasks within a role or 

interactions between tasks of different roles. Figure 86 shows an example Concurrent task diagram and 

Figure 87 represents the different roles in a multiagent system along with their associated tasks. 

Dereaister 

removelnfoSource(t,s) 
) 

i L 

receive(deregister(t, s), r) Asend( 

1 ' 

idle • 
i \ 

A send(acknowledge(), r); 
newlnfo(t,s) 

receive 

\ ' 
Reaister 

addSource(t, s) 

Figure 86. Registration Task [4] 

Concurrent tasks have the goal in MaSE of defining the behavior of agents by tying together the 

internal reasoning processes, interactions with other internal processes and external interactions with other 

agents [3]. Tasks are categorized by their life span and responsiveness. Task life spans are either persistent 

or transient. Persistent tasks always have a null transition from the start state to the first state. These tasks 

are started when the agent is created and run until either the task or agent terminates.   Transient tasks, 

however, always have a trigger event on the transition from the start state. These tasks are not started upon 

agent creation but only when the agent receives its trigger event. Transient tasks make it possible to have 

multiple concurrently executing tasks of the same type. 
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Figure 87. MaSE Role Model [5] 

There are three types of task responsiveness: reactive, proactive or heterogeneous. Reactive tasks 

can be either persistent or transient. A persistent reactive task has a null transition from the start state to an 

idle state, where it remains until it receives a triggering event from the agent.   On the other hand, a 

transient reactive task must receive a triggering event from the agent before it can begin processing.   A 

proactive task continuously generates requests for other agent or tasks, is always persistent and does not 

contain any idle states. And finally, a heterogeneous task is a combination of a proactive and reactive task, 

but is always persistent, never starts in an idle state and must generate at least one request for another task 

or agent before entering an idle state. 

After the analysis phase is complete, there are four steps in the design phase [23]. The first of 

these four steps is Creating Agent Classes. An Agent Class is a model for the types of agents that will exist 

in the system and is similar to an object class in object-oriented except that an agent class is defined by the 

roles it plays and not by attributes and methods. Agents are then just instantiations of these agent classes as 

is the case for objects in OO and can dynamically play one or more roles during execution of the system. 

Along with assembling the agent classes in this step, conversations between those classes are 

identified. Conversations are the mechanism by which agents communicate within MaSE. A conversation 

is a coordination protocol defined between two agents.   Agent classes and conversations are graphically 
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displayed in an Agent Class Diagram as shown in Figure 88. Agent class names and the roles that the 

agents play are contained in the boxes while the lines between the boxes represent the conversations. Lines 

point from the agent that initiates the conversation to the agent that responds. 

FileMonitor 
• FileDeletionDetector 
• FileModifiedDetector 

v.   FileDetection 

NotifyUser 
Notifier 

• FileNotifier 
• LoginNotifier 
• AdminNotifier 

Userinterface 
•     User 

LoainMonitor 
•    LoginDeleotor 

--^Login Detection 

Figure 88. Agent Class Diagram [23] 

Once the conversations have been identified, the details of the conversations are defined in the 

Constructing Conversations design step.   Conversation details are derived from the concurrent tasks. Each 

event or message in the tasks and sequence diagrams must be translated into a send and receive transition 

on two complimentary communication class diagrams.   Communication Class Diagrams define the states 

for every conversation and are modeled as finite state automaton. As stated above each conversation has an 

initiator agent and a responder agent. Conversations should be small and only support one goal if possible. 

Next in the Design phase is the Assembling Agents step. This step is concerned with creating the 

internals of the agent classes and is accomplished by defining the agent architecture and components that 

make up that architecture. Examples of agent architectures are: Belief-Desire-Intention (BDI), reactive, 

planning and knowledge. These architectures are essentially composed of components and connectors. 

In MaSE, a component is a storehouse of an agent's state and execution and is graphically 

represented much like a class is in an 00 diagram with attributes and methods. Components are assembled 

to define an agent class by one of three different methods: 

• Using a pre-defined architecture 

• Combining one or more pre-defined architectures to form a new architecture 
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•     Define an architecture and corresponding components from scratch 

The first two methods allow for modification of the components in the architectures by adding, deleting or 

modifying the attributes and methods of those components. 

As stated above the interactions between components are connectors. There are currently two 

types of connectors: inner agent and outer agent. An Inner Agent Connector connects two components 

with the same agent class, giving one or both of the components access to the attributes and methods of the 

other component. An Outer Agent Connector connects a component from one agent class to an external 

entity, which could be a component from another agent class or an entity in the agent's environment. Both 

inner agent and outer agent connectors are represented using one-way or two-way arrows, but the arrows 

for the outer agent connectors are thicker and dashed. The directions of the arrows denote which entity has 

access to the other entity. An example component diagram in MaSE with inner and outer agent connectors 

is shown in Figure 89. 

Messageinterface 

send(msg:Message) 
#receiveMsg(msg:Message) 

Controller 

msgCheckRules(msg:Message) 

Effector 
name:String 
ops: Set(Operator) 
executeOp(params: 
Sequence(OclAny)) 

RuleContainer 
rule: Set(Rule) 
msgTrigger: Message 
executeMsgValid(msg:Message) 

Figure 89. MaSE Component Diagram [15] 

System deployment is the final step in the design phase of MaSE and is the step where the 

previously defined agent classes are instantiated. Numbers, types and locations of agents within the system 

are shown in a deployment diagram.    Boxes on the diagram represent the different agents and the lines 

between them represent conversations between the agents.  A dashed line around a group of boxes means 

that all those agents reside on the same machine.  A deployment diagram is primarily used to identify the 
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machines that the agents will be using as well as being used to tune the system to maximize processing 

power and network bandwidth. An example deployment diagram is shown in Figure 90. 

Figure 90. Deployment Diagram [23] 

Ä.3.4 Summary 

As shown above the GAIA, MASB and MaSE methodologies all cover the entire lifecycle of 

multiagent systems design. All three methodologies are similar because they are based on the view of a 

multiagent system being a computational organization consisting of various interacting roles. In each 

methodology an agent can play one or many roles at any given time. The agents in these methodologies 

can also be involved in more than one conversation at a time. 

These methodologies differ mainly in terms of the amount of detail they provide and functionality 

not found in the others. MaSE and MASB provide much more detail for defining conversations than 

GAIA. MASB is the only methodology that emphasizes human/agent interactions. Only MASB and 

MaSE provide models for building the internal knowledge structures for agents and MaSE is the only 

methodology that specifies the locations of the agents in the final system. One major shortfall that exists in 

all three of the methodologies described above is the ability to analyze and design a multiagent system 

where the agents can be dynamic. 
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A.4 Mobile Agent Platforms 

Once a multiagent system has been analyzed and designed utilizing dynamic agents then an agent 

platform is required to handle the execution of those agents. An agent platform, by general definition, is a 

software system that has the ability to create, name, dispatch and terminate agents [1]. The Foundation for 

Intelligent Physical Agents (FIPA) [6] has defined an agent management reference model, which outlines 

the following logical components that can be included in an agent platform: 

• Agent Platform (Agent Execution Environment) - Environment in which the agent can exist. 

• Agent Management System - Agent that manages the use of and access to the AP. 

• Agent Communication Channel - Allows agents to exchange information between one another 

concerning services and communication messages. 

• Directory Facilitator - A "yellow pages"-like directory service that advertises the services the 

agents provide within the system. 

• Agent Platform Security Manager - Agent that maintains the security policies for the AP.   An 

APSM is also responsible for negotiating access requests for agents with other APSMs. 

• Agent Resource Broker - Agent that maintains and brokers software services provided by non- 

agents. 

• Wrapper Agent - Agent that communicates with non-agent software, allowing agents to interact 

with that non-agent software. 

Most current agent platforms that support mobility, including Concordia [22], Telescript/Odyssey [21], 

Aglets Workbench [10] and Carolina [16], provide a variation of these capabilities. Each of these mobile 

agent platforms is discussed in the following sections. 
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A.4.1 Concordia 

Concordia [22] is a mobile agent system currently under development at Mitsubishi Electric 

Horizon Systems Laboratory. Concordia provides all of the logical components listed by FIPA. Figure 91 

shows the current Concordia Server Architecture. 

Concordia Server 

Figure 91. Concordia Architecture [22] 

The Agent Manager handles the transfer of the agents to and from the Concordia server and 

provides the place where agents execute.  The Persistence Manager and Queue Manager work in tandem 

with the Agent Manager to ensure reliable agent migration and survivability. The Queue Manager is used 

to store the state of agents before they are transferred to other Concordia servers. If other servers are down, 

the Queue Manager will periodically attempt to resend agents until the node is back online.    The 

Persistence Manager is used to store the state of agents on disk so recovery from system crashes is possible. 

Agents have an itinerary that controls their movement from server to server. The itinerary consists 

of a server address and method. Once an agent is started it travels to the first place listed in the itinerary 

and runs the specified method for that location. Once that method is finished the agent travels to the next 

location specified in the itinerary. This process continues until the itinerary is finished. The itinerary can 

be modified during agent execution. 
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Agents are created by authorized users and carry the users' identity wherever they travel. Thus, 

the Security Manager verifies new agents by the users who created them. The Security Manager provides 

protection is the following three areas: agent storage, agent transmission and server resources. 

The Directory Manager provides the directory facilitator functionality for Concordia while the 

Event Manager provides the agent communication channel. Asynchronous distributed events and agent 

collaboration are the two forms of inter-agent communication within the Concordia server. Events are 

basically messages that are sent to agents. Agents can get on event mailing lists where events of a certain 

type are automatically sent to subscribing agents. Agents can also join event groups where each agent in a 

group receives an event sent by one of the members of that group. It is these event groups, which form the 

basis for agent collaboration. 

A.4.2 Telescript/Odyssey 

Telescript or Odyssey (Java version of Telescript) [21] was the first commercial implementation 

of a mobile agent system. Telescript implements all of the FIPA agent management reference model 

logical components except the agent resource broker and wrapper agent. This technology is focused on the 

concept of an electronic marketplace, which is a public network of service and goods providers and 

consumers that find each other and transact business electronically. This network does not exist currently 

but its beginnings can be seen on the Internet. 

Telescript is based on the following concepts: places, agents, travel, meetings, connections, 

authorities and permits. Telescript models a network of computers as a collection of places. These places 

offer service to mobile agents and some examples from the electronic marketplace are: a directory place, a 

ticket place, a flower place, etc. Places are equivalent to the Agent Platform, Agent Manager and Directory 

Facilitator components in the FIPA model. Agents represent either a provider or a consumer and can either 

be stationary or can travel to other places. An agent travels to a new place by calling the go ( ) 

instruction. Meetings occur between agents located in the same place and are where agents conduct their 

business. Connections allow two agents on different machines to communicate. Connections and meetings 
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correspond to the Agent Communication Channel component in the FIPA model. Authorities deal with 

verifying the identity of agents for security reasons while permits control the capabilities of places and 

agents. Examples of permits for an agent would be the permission to execute certain instructions, the 

maximum lifetime for the agent, and the maximum amount of computation resources that the agent can use. 

Authorities and permits correspond to the Agent Platform Security Manager component in the FIPA model. 

A.4.3 Aglets Workbench 

Aglets Workbench [10] is the mobile agent architecture designed by IBM. Aglets Workbench 

implements only the Agent Platform, Agent Management System, Security Manager and Agent 

Communication Channel components of the FIPA agent management reference model. Aglet is the name 

for the mobile agents executing on this workbench. 

Agent Platform functionality is provided by the workbench. Each workbench provides a toolkit 

for creating aglets and also the place where the aglets execute. A context is a stationary object on a 

workbench that acts as the agent manager for one or many aglets. There can be many contexts managing 

one or more aglets running on a given workbench at any given time. Once a context has been created then 

aglets can be created within that context. Aglets move from context to context by calling a 

dispatch( ) method. 

Aglets communicate by message passing only. Messages are simply objects that are passed 

between aglets and can be synchronous or asynchronous. Multicasting is also supported but only within a 

given context. However, all messages passed between aglets must go through proxies. A proxy is an 

object that represents an aglet and provides the communication interface for the aglet, security and location 

transparency. Any given message is first passed to a proxy object and that proxy object sends the message 

to the intended aglet whether the aglet is local or on a remote host. 

Contexts and proxies jointly handle security for aglets. Contexts provide security by protecting 

the host system and its resources from the aglets that are operating within a given context. Also, contexts 

protect aglets from interfering with each other within a given context.  Proxies protect aglets by ensuring 
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that all communication is handled by message passing and not by one aglet invoking a method within 

another aglet. 

A.4.4 Carolina 

Carolina [16] is currently under development at the University of Connecticut as part of the Multi- 

Agent Distributed Goals Satisfaction project. APIT, the University of Connecticut, and Wright State 

University are conducting this research jointly. Figure 92 shows the current Carolina server architecture. 

MessageClient Port MessageManager 

CAROLINA 

MessageDirectory 

AgentClient Port 
I 

AgentDirectory 

AgentManager 

MessageServer Port 

^ 
V" 

AgentServer Port 

Figure 92. Carolina Architecture [16] 

Three of the logical components listed by FIPA are provided by Carolina: the Agent Execution 

Environment, the Agent Management System and an Agent Communication Channel. An agent execution 

environment is common to all APs and is the place where the agent code executes. An AgentManager and 

AgentDirectory handle agent management in Carolina.   The AgentManager handles all agents that are 

executed locally or arrive on the AgentServer Port.   The AgentDirectory is a repository of information 

about all the agents that the server has seen, thus making it one of the key components for communication 

and system consistency.  Information stored in the directory about agents includes: a unique name, agent 

type, creation machine address, current machine address, goal, and pointer to the messages stored for the 

agent. 
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Finally, the MessageManager and MessageDirectory make up the Agent Communication Channel 

in Carolina. All communication between agents running in the Carolina environment is handled through 

the server due to the problems of keeping track of mobile agents and being able to deliver messages in a 

timely manner. The decision against agent-to-agent communication constitutes a departure from most 

multiagent systems. This decision was made in order to ensure the following system conditions [16]: 

1) Agents do not increase in size even with an increase in interactions between agents 

2) Each node in the system has a consistent view 

3) Network overhead is minimized 

4) No central point of failure 

5) Communications between agents are completed within a reasonable time frame 

First, keeping agent size from increasing is accomplished by requiring agents to keep just the 

unique names of other agents they communicate with and not location information. Second, information 

sharing between the nodes is what maintains a consistent view. This sharing is accomplished by the use of 

two mobile agents, the communication agent and the wanderer agent. The communication agent keeps the 

AgentDirectory information current on each Carolina server. This agent continuously moves between the 

servers merging its information with each server's AgentDirectory to reflect the most accurate information. 

The wanderer agent keeps track of where all the servers are physically located. On startup of a server this 

agent is sent to notify the other Carolina servers about the new server and to give the locations of the other 

servers to the new server. On shutdown of a server the wanderer for that server moves and tells the other 

servers of the shutdown. 

Third, the need for broadcast messages has been virtually eliminated because of the 

communication protocol used. This conclusion follows directly from the above discussion about consistent 

views. Agent locations are stored in each server's AgentDirectory; therefore, an agent does not have to 

broadcast a message to find a particular agent. 
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Fourth, there are no centrally located lookup tables or directories for agent locations; hence there 

is no single point of failure. Finally, since each node in the system has a consistent view, communications 

can be completed within a reasonable time. 

Communication between agents running on Carolina servers is accomplished by passing serialized 

Java objects. Messages are posted to the server using the MessageManager. The MessageManager decides 

whether the message is addressed to a local agent or an agent that has moved to a remote host. If the agent 

is not local, the MessageManager forwards the message to the last known destination of the agent. 

However, if the agent is local, the message is put into the MessageDirectory where it remains until the 

agent it is addressed to reads it from the server. This means that Carolina agents must constantly poll the 

server to see if they have any messages waiting for them. 

Messages can be addressed by agent ID or by agent type with the former allowing for interaction 

between specific agents, while the latter allows an agent to communicate with any other agent of a 

particular type. For messages sent by agent ID, the message is sent to the server where the agent is active 

and put in the MessageDirectory until the agent with the correct ID reads it. However, when messages are 

sent by agent type, any agent of that type can read the message. Once the message is read it is removed 

from the MessageDirectory and no other agents of that type can read the message. Service brokering is a 

good example of how these two addressing methods work. When a new agent comes into the system, it can 

announce itself and the service it provides to a broker agent. The agent ID would be one piece of 

information recorded by the broker. When another agent requests a list of service providers from the 

broker, it receives a list of agent IDs and hosts. The requesting agent can then send messages directly to 

the agent that provides the required service. 

In Carolina, mobility is also handled by Java's object serialization capability, which takes the 

identity and state of a class and encapsulates it. Once serialized, the state and identity is passed to another 

agent platform and reconstructed. In Carolina, the program code for each type of mobile agent resides on 

each server so the code does not have to be passed when an agent moves. Each Carolina agent class has 

three basic methods called job, arrival and leave as shown in Figure 93.   When an agent is created or 
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instantiated, execution starts in the birth method. If a destination machine (IP) has been specified before 

the end of the job method then the leave method is executed and the agent is passed to the specified 

machine. If a destination IP address has not been specified then the death method is executed and the agent 

dies. 

Figure 93. Agent States in Carolina [16] 

New mobile  agents arrive  through  the AgentServer port and are then processed by the 

AgentManager. If the intended destination is the local machine the AgentManager registers the agent in the 

AgentDirectory, deserializes it, and then hands it over to the ExecutionContainer, which provides a thread 

for it to execute.   When an agent is created and its intended destination is not local, the AgentManager 

registers the appropriate information with the AgentDirectory and the agent is serialized and sent through 

the AgentClient port. 

A.4.5 Summary 

Dynamic agents need certain capabilities provided by their execution environment. FIPA has 

defined an agent management reference model that defines many of these capabilities or logical 

components. The dynamic agent systems discussed above, Concordia, Telescript/Odyssey, Aglets 

Workbench and Carolina, have at least the following three components: Agent Platform, Agent 

Management System and Agent Communication Channel. All four platforms were written in Java to 

provide hardware and operating system independence. 
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Most of the differences between the platforms are either in functionality provided, the way in 

which agents communicate or how agent mobility is handled. Concordia provides the most functionality in 

terms of the FIPA logical components but takes away some of the autonomous ability of the agents by 

using an itinerary. Carolina does not support direct agent-to-agent communication for reasons outlined 

above. Telescript/Odyssey is the only platform where the agent moves by calling a command within the 

agent system itself. The other platforms have "job" methods that once they are finished executing the agent 

will move if required. 

A.5 Summary 

This chapter provided background information on all the critical pieces of agent-based systems as 

defined by researchers in the field of Artificial Intelligence. These critical pieces included: the definition of 

agents, the definition of dynamic agents, evaluation of current Agent-Oriented Software Engineering 

(AOSE) methodologies and an evaluation of current dynamic agent platforms. Agents are a natural 

extension of objects from the object-oriented paradigm but are autonomous, cooperative, perceptive and 

pro-active. Dynamic agents are agents with the following additional abilities: cloning, instantiation and 

mobility. AOSE differs from object-oriented in terms of the agent-oriented abstractions used to model a 

system. These abstractions include agent-oriented decomposition, characterizing complex systems by 

subsystems, interactions, and organizational relationships to include building in mechanisms for agents to 

flexibly form, maintain, and disband these organizations. Finally, special agent platforms are required to 

handle the execution of dynamic agents. Agent platforms are software systems with the ability at a 

minimum to provide places for dynamic agents to execute and employ the dynamic abilities described 

above. A thorough understanding of each of these pieces was essential in order to correctly integrate 

dynamic agents into an existing AOSE methodology. 
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B. Transformation Models 

This appendix is a summation of design models defined in Chapter II of Sparkman's thesis [18]. 

The models described here will be the models used for the transformations for this thesis in Chapter III and 

are a subset of the design models defined by Sparkman. These models are formally defined and the 

semantics of the models are clarified to ensure predicable behavior of the transformations. 

B.l Design Model Definitions 

This section defines the types that make up the MaSE design models. Each type in the models is 

defined by using the object format exhibited in Figure 94. Curly brackets { and } represent sets and square 

brackets [ and ] denote attributes are sequences of a certain type. The Unified Modeling Language (UML) 

syntax is used in graphical class diagrams that show how the types in the models are related to each other. 

The UML class diagram in Figure 95 shows the Agent Class, Component Class and StateTable Class types 

used to define these models. Aggregate components in the class diagrams become an attribute for the type 

that represents the parent class in the aggregate relationship [18]. 

TypeName 

attributeA: AType 
attributeB: BType 

Figure 94. Example Graphical Representation of a Type [18] 
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Figure 95. Class Diagram for the Types Used in the Design Phase ofMaSE [18] 

B.l.l Agents 

The Agent Class Diagram is the first model in the MaSE design phase. It shows the agent classes 

in the system, the roles those agents play, and the conversations defined between the agent classes. An 

agent type (Figure 96) represents the agents defined in the Agent Class Diagram and is defined by a name, 

its roles, its components, and the conversations it participates in. Each agent type has a unique name that 

distinguishes it from any other agent type in the system. The roles and conversations attributes [18] will 

not be used in the transformation definitions in this thesis. 

Agent 

name: String 
components: {Component} 

Figure 96. Agent Type [18] 

B.1.2 Components 

A name and a state table, as used within this thesis, define a component. Figure 97 shows the 

component type. Agent types cannot have two components with the same name. Also, the name 

"AgentComponent" is reserved for the agent component of an agent class. 
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Component 

name: String 
stateTable: StateTable 

Figure 97. Component Type [18] 

B.1.3 State Tables 

StateTables are used to define the behavior of concurrent tasks and components. Figure 98 shows 

the StateTable type. StateTables are composed of states and transitions. The states attribute represents the 

set of all possible states that a task or component can be in at any given time while the transitions attribute 

represents the set of transitions between the states. The UML class diagram in Figure 99 gives a graphical 

overview of the different types used to define a StateTable and shows the different relationships between 

them. 

StateTable 

states: {State} 
transitions: {Transition} 

Figure 98. StateTable Type [18] 
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Figure 99. StateTable Class Diagram [18] 

B.l.3.1 States 

As mentioned in the previous section, state tables are composed of states and transitions. Figure 

100 displays the state type that is used within the transformations defined in this thesis. States represent the 

internal processing of components. They contain a name attribute that must be unique within a given state 

table and also a sequence of actions that are executed upon state entry. Every state table contains a start 

state with the name "start", which is the beginning of the state table. A state table may contain an end state 

with the name "end", which is the ending of the state table if applicable. 

State 

name: String 
actions: [Action] 

Figure 100. State Type [18] 
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B.l.3.2 Transitions 

Transitions are the other elements that make up a state table. They define the communication 

within the system and are the connectors between the states in a state table. Transitions are defined by the 

following: start state, end state, receive event, guard condition, actions and transmission events. The syntax 

for a transition in a state diagram is: 

trigger [guard] / action(s) ~ transmission(s) 

Transitions are assumed to occur instantaneously and either progress an entity from one state to a 

different state or from one state back to the same state. Actions are executed in the given order before any 

transmissions are sent. A transition is enabled if all of the following conditions are true. 

1. The transition'sfrom state is the current state. 

2. The transition's trigger event (if applicable) has been generated. 

3. The transition's guard condition (if applicable) evaluates to true. 

4. All actions in the transition's from state have been completed 

If a transition does not have a trigger or a guard, both conditions are assumed to hold and the 

transition is enabled. If there is no trigger, but there is a guard that is true, then the transition will also be 

enabled. 

The same transition type is used for both the Concurrent task and Component models and is 

shown in Figure 101. The difference in the semantics for transitions between the two models is that in the 

Component model three of the attributes shown for a transition (receiveEvent, start, end) are not used. The 

receiveEvent is not used because the events on the transitions in the state table for the components are 

defined to be internal events to other components of the same agent instance. And, the start and end 

attributes were only used within [18] to mark the start and end of conversations, which are not are part of 

the transformations defined within this thesis. 
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Transition 

from: State 
receive: Event 
receiveEvent: ReceiveEvent 
guard: Boolean Expression 
to: State 
actions: [Action] 
sends: {Event} 
start: Boolean 
end: Boolean 

Figure 101. Transition Type [18] 

B.l.3.3 Actions 

Actions (or activities) are used to represent reading a percept from sensors, internal reasoning or 

activating effectors that make changes in the environment. They represent the actual processing within 

states in a state table. Actions can be defined in the form of functions that can have any number of input 

parameters and results in the form of a single or tuple value. They can also be used for tuple assignments 

as well. The syntax for actions is shown below: 

result = name-of-action(parameterl, parameter2, ... ,parameterN) 

<x,y> = position(object) 

<a,b> = <x,y> 

Figure 102 displays the Action type. The attribute, Ihs, represents the left-hand-side of an 

assignment statement. It represents the result of the action as a sequence of strings. The attribute, rhs, 

represents the right-hand-side of the assignment statement and is either a sequence of strings or a 

FunctionCall. 
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Action 

lhs: [String] 
rhs: FunctionCall 1 [String] 

Figure 102. Action Type [18] 

FunctionCalls are defined by a name attribute and a sequence of input parameter types.   The 

FunctionCall type is shown in Figure 103. The Parameter type is show in Figure 104 and is defined by a 

name attribute. 

FunctionCall 

name: String 
parameters: [Parameter] 

Figure 103. FunctionCall Type [18] 

Parameter 

name: String 

B.l.3.4 Events 

Events represent mess 

displays the Event type.  The 

while the content of the mess£ 

section. 

Figure 104. Parameter Type [18] 

ages that are passed, either internally or externally, in a system.   Figure 105 

performative or intent of the message is represented by the name attribute 

ige is represented by a sequence of parameters as described in the previous 

Event 

name: String 
parameters: [Parameter] 

Figure 105. Event Type [18] 
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Internal events are distinguished from external events in Concurrent Task Diagrams. External 

events are represented by a ReceiveEvent type, which is shown in Figure 106. The message being received 

is represented by an Event type, while the sender of the message is represented as a string. 

ReceiveEvent 

event: Event 
sender: String 

Figure 106. ReceiveEvent Type [18] 

ReceiveEvents trigger transitions in Concurrent Task Diagrams. The syntax for ReceiveEvents on 

a transition is shown below. 

receive(event,   sender). 

B.2 Summary 

This Appendix described the models used within MaSE and the relationships between those 

models. Those models are made up of different types as defined in Chapter II of Sparkman's thesis [18]. 

Each type, which was used within this thesis to define the transformations in Chapter III, was defined by 

attributes and relationships with the other types. 
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